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Abstract

Uplift modeling aims to optimize treatment policies and is a

promising method for causal-based personalization in vari-

ous domains such as medicine and marketing. However, ap-

plying this method to real-world problems faces challenges

such as the impossibility of validation and binary treatment

limitation. The Contextual Treatment Selection (CTS) al-

gorithm was proposed to overcome the binary treatment

limitation and demonstrated state-of-the-art results. How-

ever, previous experiments have implied that CTS is cost-

ineffective because it requires a large amount of training

data. In this paper, we demonstrate that the estimator max-

imized in CTS is biased against the true metric. We then

propose a variance reduced estimator based on the doubly

robust estimation technique that provides unbiasedness and

desirable variance. We further propose a treatment policy

optimization algorithm called VAriance Reduced Treatment

Selection (VARTS), which maximizes our estimator. Empiri-

cal experiments on synthetic and real-world datasets demon-

strated that our method outperforms other existing meth-

ods, particularly under realistic conditions such as small

sample sizes and high noise levels. These theoretical and

empirical results imply that our method can overcome the

critical challenges of uplift modeling and should be the first

choice for optimizing personalization in various fields.

1 Introduction

In various real-world problems, choosing the optimal
treatment to maximize the profit of interest is crucial
[1]. For example, online advertising companies need
to deliver the best advertisements to each user to
achieve the highest conversion rate [2]. In medicine,
the most effective medical treatment should be selected
for each patient from numerous medical options [3,
4]. Accurately estimating the causal effects of the
treatments is essential to deriving an optimal policy.
Conventionally, the average treatment effect (ATE),
which is the net effect on the whole population, is
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used to choose the single best treatment for everyone.
ATE is estimated by randomly assigning treatments to
subjects through randomized controlled trials (RCTs)
and averaging the outcomes within each treatment.
However, this sort of treatment policy is not always
optimal. For example, the best medical treatment
for the entire patient population may have negative
side effects on some patients. In other words, finding
an optimal personalized treatment for each patient is
essential [1, 5].

Uplift modeling is a promising field for optimiz-
ing our metric of interest: the expected response of a
treatment policy [5, 6]. The aim is to maximize the
expected response by using specialized methods that
deal with the unobservability of counterfactual out-
comes (i.e., outcomes for unobserved treatment assign-
ments) to develop an optimal policy. Several uplift mod-
eling methods have been used to improve the survival
rates of breast cancer patients by personalizing their
radiotherapy treatment allocations [7] and to raise the
revenue of an airline company by optimizing its flight
reservation pricing strategy [5].

Despite expectations, most uplift modeling meth-
ods [8, 9, 10, 11] are only applicable to binary treat-
ment problems (binary treatment limitation). This lim-
itation is critical because the multiple treatment opti-
mization problem is ubiquitous, such as in the choice of
medication. Moreover, accurately evaluating the policy
performance is impossible because the counterfactual
outcomes are unobservable (impossibility of validation).
Thus, a stable model performance across a range of set-
tings is required for real-world applications. However,
the variance in the metric estimation or the worst-case
performance of policy optimization algorithms have not
yet been fully investigated [11]. In summary, a treat-
ment policy optimization algorithm that can directly
and stably maximize the expected response in multiple
treatment settings is highly desired.

Among the multiple treatment optimization meth-
ods, the Separate Model Approach (SMA) is the sim-
plest and commonly used [12, 13]. Predictive models are
trained to predict the outcomes under each treatment,
and the treatment with the best predictive value of new
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data is chosen. SMA is easily implemented because
it does not require a specialized algorithm. However,
SMA cannot capture causal signals because it does not
directly predict causal effects and often overestimates
features related to the outcomes but not to the causal
effects [14, 15].

To overcome the shortcoming of SMA, Contextual
Treatment Selection (CTS) was proposed [5, 6]. CTS di-
rectly maximizes the local expected response estimator
during the tree construction process and is currently the
only algorithm that can handle multiple treatments and
continuous outcomes at the same time [5, 6]. However,
CTS suffers from high variance of its estimator and a
costly data gathering process to ensure adequate perfor-
mance. This is because it estimates the local expected
response by using only factual (i.e., observed) outcomes
and ignores counterfactual outcomes. In fact, the exper-
imental results in [5, 6] showed that CTS needs a large
amount of training data to be effective. This limits the
real-world applicability of CTS.

In this paper, we prove that the local expected re-
sponse estimator optimized by CTS is actually biased
because of the regularization for variance reduction. We
then propose a variance reduced local expected response
estimator that is based on the doubly robust estimator,
which is well-established in the literature on causal in-
ference [16, 17]. The technique is useful for estimating
the expected response efficiently but has not been ap-
plied to uplift tree methods. Our theoretical analysis
showed that our estimator is unbiased and has a smaller
variance and tighter estimation error tail bound than
the naive one. We further propose a treatment policy
optimization algorithm called VAriance Reduced Treat-
ment Selection (VARTS) that maximizes our estimator
during its learning process. Finally, we conducted ex-
tensive experiments on both synthetic and real-world
datasets to demonstrate the effectiveness of the pro-
posed estimator and algorithm.

The contributions of this paper are summarized as
follows:

• We investigated the theoretical and empirical prop-
erties of CTS and showed that the estimator max-
imized by the algorithm is actually biased.

• We propose a variance reduced estimator and prove
that it is unbiased and achieves a smaller variance
and tighter estimation error tail bound.

• We propose the VARTS algorithm maximizing the
variance reduced estimator.

• We empirically demonstrated the effectiveness of
the proposed estimator and algorithm using both
synthetic and real-world datasets.

2 Problem Setting

Here, we formulate the uplift modeling with multiple
treatments.

2.1 Notation Given a set of N individuals indexed
by i, we define Xi ∈ X as the feature vector for each
unit. We consider settings where T treatments exist and
let Wi ∈ {0, 1, 2, . . . , T − 1} ∈ T be a categorical ran-
dom variable that represents i’s treatment assignment.
When i receives treatment t, Wi = t. We assume that
data are gathered through RCTs and that the feature
vectors and treatment assignments are statistically in-
dependent (i.e., Xi ⊥ Wi, ∀i ∈ {1, 2, . . . , N}). We also
use p(t) to represent the treatment assignment probabil-
ity (i.e., p(t) = P (Wi = t)).

Here, we follow the Rubin causal model [18] and
assume that there exist T potential outcomes cor-
responding to T treatments for each data: Yi =

(Y
(0)
i , Y

(1)
i , . . . , Y

(T−1)
i ) ∈ YT . The fundamental prob-

lem of uplift modeling is that only the potential out-
come corresponding to the realized treatment can be
observed. Let Y obs

i be the observed outcome; then,

Y obs
i = Y

(t)
i when Wi = t, and the other potential out-

comes remain counterfactual.
In addition, we use µ

(t)
i to denote expected poten-

tial outcomes for each unit, which means that µ
(t)
i =

E[Y
(t)
i |Xi = xi]. We use D̂ =

{(
xi, wi, y

obs
i

)}N
i=1

iid∼
P (X,W,Y ) as the empirical distribution of N inde-
pendent and identically distributed data.

In our theoretical analysis, nφ and Dφ represent∑N
i=1 I{xi ∈ φ} and P (X,W,Y |X ∈ φ), where φ ⊂ X

is an arbitrary subset of the feature space.

2.2 Treatment Policy and Expected Response
The treatment policy h(·) is a mapping from the feature
space to the treatment space. We consider the following
expected response as the performance metric of a treat-
ment policy; the main focus of this paper is to propose
an algorithm to optimize this metric.

Definition 2.1. (Expected Response) Given a
treatment policy h, the expected response is

V (h) = EX

[
EY

[
Y (h(X)) |X

]]
The optimal treatment policy h∗ is one that outputs

the treatment corresponding to the potential outcome
with the highest expected value [5]:

h∗ (xi) ∈ arg max
t∈T

E
[
Y

(t)
i |Xi = xi

]
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3 Existing CTS Algorithm

In this section, we discuss the existing state-of-the-art
treatment policy optimization algorithm called CTS.
The main idea of CTS is to gradually personalize
the treatment assignments to maximize the estimated
expected response while splitting the feature space.

3.1 Split Criterion of CTS Let φ ⊂ X be a node
of a tree; then, we use S to denote the candidate set
of binary splits s that split φ into two child nodes:

φl(s) ⊂ φ, φr(s) ⊂ φ. Let V (φ, t) = E[Y
(t)
i |X ∈ φ]

be the local expected response (i.e., expected response
in φ given t). At each depth during the tree growing
process, CTS attempts to find a split s ∈ S that leads
to the maximum expected response. The optimal binary
split is defined as:

s∗ = arg max
s∈S

P (X ∈ φl(s) |X ∈ φ)×max
tl∈T

V (φl(s), tl)
(3.1)

+ P (X ∈ φr(s) |X ∈ φ)×max
tr∈T

V (φr(s), tr)

The main focus of CTS is finding the best split
from factual training data. First, the conditional
probabilities can be straightforwardly estimated from
the given samples:

p̂ (φ′ |φ) =

∑N
i=1 I{xi ∈ φ′}∑N
i=1 I{xi ∈ φ}

where I{·} is the indicator function and φ′ is a child
node of φ.

On the other hand, the local expected response is
not straightforward to estimate because the unobserv-
ability of the counterfactuals makes directly observing
the realizations of the local expected response impossi-
ble. To deal with this problem, CTS utilizes a random
variable composed of observable variables:

Znaive(i, t) =
Y obs
i I{Wi = t}

p(t)
(3.2)

Proposition 3.1 shows that the expectation of the
random variable in (3.2) is equal to the true local
expected response:

Proposition 3.1. The following holds for any φ ⊂ X
and t ∈ T .

V (φ, t) = EDφ [Znaive(i, t)]

See Appendix A for the proof.

Proposition 3.1 implies that the local expected
response can be estimated without bias by averaging

the realizations of the random variable in (3.2):

V̂naive (φ, t) =

∑
i:xi∈φ y

obs
i I{wi = t}∑

i:xi∈φ I{wi = t}
(3.3)

However, this naive estimator is calculated from only
the factual outcome of data assigned to the treatment
t. This property implies that this naive estimator
may suffer from high variance, especially when a small
amount of data is available in the node φ.

CTS deals with the variance problem by introducing
regularization, which exploits the expected response
estimation of the parent node to some extent. The
expected response estimator with regularization that
CTS actually relies on is

V̂cts (φ′, t) =

∑
i:xi∈φ y

obs
i I{wi = t}+ n reg × V̂cts (φ, t)∑
i:xi∈φ I{wi = t}+ n reg

(3.4)

where n reg is a predetermined hyper parameter and φ
is the parent node of φ′.

The split criterion of CTS is defined on the basis of
(3.1) and (3.4):

ŝ = arg max
s∈S

p̂ (φl(s) |φ)×max
tl∈T

V̂cts (φl(s), tl)

+ p̂ (φr(s) |φ)×max
tr∈T

V̂cts (φr(s), tr)(3.5)

3.2 Theoretical Analysis of CTS Here, we theo-
retically analyze the estimator (3.4) that is maximized
during the tree growing process of CTS. First, we show
that, because of the additional regularization, the esti-
mator (3.4) does not always satisfy unbiasedness, while
the naive estimator (3.3) always does.

Suppose that the true local expected response of
the parent node is given (i.e., V̂cts(φ, t) = V (φ, t)). The
local expected response estimator (3.4) is interpreted as
the sample average of the following random variable1:

Zcts(i, t) =
p(t)

p(t) + n reg

Y obs
i I{Wi = t}

p(t)
(3.6)

+
n reg

p(t) + n reg
V (φ, t)

where n reg2 is a hyper parameter that depends on
the child node. This parameter determines how much
information of the parent node Zcts(i, t) is considered
when the local expected response of the child node is
estimated.

1Here, we use the theoretical treatment assignment probability

p(t) instead of its empirical estimate 1
nφ

∑
i:xi∈φ I{wi = t}.

2n reg = n reg/nφ
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The following proposition states that the expecta-
tion of (3.6) is not always equal to the true local ex-
pected response.

Proposition 3.2. Suppose V (φ′, t) 6= V (φ, t), then,

V (φ′, t) 6= EDφ′ [Zcts(i, t)]

See Appendix A for the Proof.

The tree construction of CTS depends on the sam-
ple average of (3.6). However, Proposition 3.2 indicates
that the local expected response estimator of CTS is bi-
ased. Thus, CTS can lead to a suboptimal treatment
policy. In addition, the variance of the estimator has
not been analyzed; whether the regularization actually
reduces the variance of the naive estimator remains un-
known.

4 VARTS Algorithm

In this section, we propose a variance reduced local ex-
pected response estimator inspired by the doubly robust
estimation technique [16, 17]. This estimator exploits
missing counterfactuals by predicting them in order to
overcome the drawbacks of existing estimators. After
a theoretical analysis of our estimator, we present our
treatment policy optimization algorithm called VARTS.

4.1 Variance Reduced Expected Response Es-
timator Our estimator utilizes the counterfactual out-
comes predicted by an arbitrary machine learning algo-

rithm before the estimation. Let µ̂
(t)
i be the predicted

value of µ
(t)
i . We introduce the following random vari-

able:

Zvarts(i, t) =

(
Y obs
i − µ̂(t)

i

)
I{Wi = t}

p(t)
+ µ̂

(t)
i(4.7)

Theorem 4.1 shows that the expectation of the
random variable in (4.7) is equal to the true local
expected response.

Theorem 4.1. The following holds for any φ ⊂ X and
t ∈ T .

V (φ, t) = EDφ [Zvarts(i, t)]

See Appendix A for the Proof.

Next, Theorem 4.2 shows that (3.2) and (4.7) have
the following variances.

Theorem 4.2. The following equations hold:

VDφ (Znaive(i, t)) = EDφ
[
ε2
]

+ VX

(
µ
(t)
i |X ∈ φ

)
+

1− p(t)

p(t)
EX

[(
µ
(t)
i

)2
|X ∈ φ

]

VDφ (Zvarts(i, t)) = EDφ
[
ε2
]

+ VX

(
µ
(t)
i |X ∈ φ

)
+

1− p(t)

p(t)
EX

[(
µ
(t)
i − µ̂

(t)
i

)2
|X ∈ φ

]

where ε =

(
Y obs
i −µ(t)

i

)
I{Wi=t}

p(t)
.

See Appendix A for the proof.

Theorem 4.2 indicates that (4.7) has a smaller
variance than (3.2) when the following inequality holds:

EX

[(
µ
(t)
i − µ̂

(t)
i

)2
|X ∈ φ

]
< EX

[(
µ
(t)
i

)2
|X ∈ φ

](4.8)

This condition requires that the counterfactual out-

come predictions (i.e., µ̂
(t)
i ) introduced in (4.7) achieve a

smaller MSE than the all zero predicted values. We as-
sume that the training data are gathered through RCT,
and thus, the distribution of the feature vector condi-
tional on any of the treatments is equal to the marginal-
ized distribution of the feature vector. This means that
the predictive models trained with each treatment group
can be used to predict the counterfactual outcomes.
Simple machine learning algorithms such as elastic net
[19] and random forest [20] have enough power to accu-
rately predict counterfactuals and satisfy (4.8). Thus,
the inequality is a relatively mild condition.

Our local expected response estimator is calculated
with the random variable in (4.7) and is defined as
follows:

V̂varts (φ, t) =
1

nφ

∑
i:xi∈φ


(
Y obs
i − µ̂(t)

i

)
I{Wi = t}

p(t)
+ µ̂

(t)
i


(4.9)

The following corollaries prove that the estimator
(4.9) is unbiased for the true expected response and
achieves a smaller variance than the naive estimator
(3.3) under the mild condition (4.8).

Corollary 4.1. (Unbiasedness) Our local expected
response estimator (4.9) is unbiased for the true local
expected response:

V (φ, t) = EDφ
[
V̂varts (φ, t)

]
See Appendix A for the proof.

Corollary 4.2. (Smaller Variance) Our local ex-
pected response estimator (4.9) achieves a smaller vari-
ance than the naive estimator (3.3) with (4.8).

VDφ
(
V̂varts (φ, t)

)
< VDφ

(
V̂naive (φ, t)

)
See Appendix A for the Proof.
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Finally, we show that our estimator (4.9) achieves
a better estimation error tail bound than the naive
estimator (3.3).

Theorem 4.3. (Estimation Error Tail Bound)

Let {(xi, (y(0)i , y
(1)
i , . . . , y

(T−1)
i ))}Ni=1 be an arbitrary

set of N independently sampled realizations. Note

that p(t) = P (Wi = t) is the probability of y
(t)
i being

observed. Then, for any δ ∈ (0, 1), the following
inequalities hold with the probability of at least 1− δ:∣∣∣V̂naive (φ, t)− V (φ, t)

∣∣∣ ≤ 1

nφ

√√√√ log 2
δ

2

∑
i:xi∈φ

ρ2i

∣∣∣V̂varts (φ, t)− V (φ, t)
∣∣∣ ≤ 1

nφ

√√√√ log 2
δ

2

∑
i:xi∈φ

ξ2i

where ρi =
yobsi

p(t)
, ξi =

yobsi −µ̂(t)
i

p(t)
.

See Appendix A for the Proof.

As stated in Theorem 4.3, if the counterfactual
predictions satisfy the condition (4.10), our estimator
(4.9) has a tighter estimation error tail bound than
the naive estimator (3.3). Condition (4.10) requires

that the counterfactual outcome predictions (i.e., µ̂
(t)
i )

introduced by the random variable in (4.7) achieves
a smaller empirical weighted MSE than the all zero
predicted values. Thus, it is easy for the condition to
hold like (4.8), and our estimator is stable in most cases.∑

i:xi∈φ

ξ2i <
∑
i:xi∈φ

ρ2i

⇔
∑
i:xi∈φ

(
yobsi − µ̂(t)

i

p(t)

)2

<
∑
i:xi∈φ

(
yobsi

p(t)

)2

(4.10)

4.2 Algorithm VARTS decides the split according
to the following criterion:

ŝ = arg max
s∈S

p̂ (φl(s) |φ)×max
tl∈T

V̂varts (φl(s), tl)

+ p̂ (φr(s) |φ)×max
tr∈T

V̂varts (φr(s), tr)(4.11)

Similar to CTS [5] and random forest [20], VARTS
utilizes a bagging ensemble of trees to mitigate the
overfitting. The whole algorithm is shown in Algorithm
1.

5 Synthetic Data Experiment

We experimentally compared VARTS with existing
methods using synthetic datasets. Note that the de-
tailed experimental conditions and hyperparameter tun-
ing procedure are presented in Appendix E.

Algorithm 1 VAriance Reduced Treatment Selection

Input: training data: D̂, number of samples used in
each tree: B (5 N), number of trees ntrees, number
of variables to be considered when looking for the
best split: mtry, maximum depth of a tree: ∆depth,
minimum number of samples required to be at a leaf
node: nmin-leaf, ML algorithm to be used to predict
counterfactual outcomes: base learner.

Training:
for n = 1, . . . , ntrees do

• Train base learner to predict yobsi from the
feature vectors with each treatment.

• Draw B samples from D̂ to create D̂B at random
with replacement.

• Build a tree from D̂B . At each node, draw mtry
coordinates at random; then, find the split with
the largest local expected response as measured
by the splitting criterion (4.11).

• Output a partition of the feature space as repre-
sented by the leaf nodes; for each leaf node, esti-
mate the local expected response to each treat-
ment with (4.9).

Prediction:
Given a new point in the feature space, the predicted
expected response to a treatment is the average
of the estimations based on (4.9) from all trees.
The optimal treatment is the one with the largest
estimated expected response.

5.1 Dataset Generation The synthetic datasets
comprised seven scenarios based on the simulation study
in [21] with the following elements:

1. The number N of samples in the training set, num-
ber p of features, treatment assignment probabili-
ties p(t) for each treatment, and conditional vari-
ance σ2 of Y obs

i . The definitions of these variables
depend on the experimental condition in Table 1.

2. The distribution DX of the feature vectors.
Odd-numbered features were drawn independently
from a standard Gaussian distribution, and even-
numbered features were drawn independently from
a Bernoulli distribution with the probability 1/2.

Any policy’s performance can be accurately evalu-
ated with synthetic datasets because they give access to
all potential outcomes.

5.2 Comparison of Expected Response Estima-
tors We empirically evaluated the bias, variance, MSE,
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(a) Bias (b) Variance (c) Mean-Squared Error (d) Estimation Error Bound

Figure 1: Metric estimation performance of expected response estimators.

and estimation error tail bound of the expected response
estimators.

5.2.1 Experimental Setup We compared the fol-
lowing estimators: V̂naive, V̂cts(n reg = 2.5, 5.0), and

V̂varts. We iterated the steps (1)–(3) below 50 times,
and report their bias, variance, MSE, and 99% confi-
dence upper bound of the absolute bias (estimation er-
ror tail bound).

1. Generate data (N = 200–800, T = 4, σ2 = 1.0)

2. Estimate the expected response of all generated
data (parent node) with V̂naive.

3. Estimate the expected response of a subgroup of
the generated data (x1 = 0, child node) with the

four estimators. Note that the estimation of V̂cts
depends on the estimation of V̂naive in the previous
step.

5.2.2 Results The result of the experiment on ex-
pected response estimators are reported in Figure 1.
We present the results with regard to each performance
metric below.

Bias: V̂naive and V̂varts estimated the expected re-
sponses with almost no bias; these results are consistent
with the theoretical analysis in Corollary 4.1. On the
other hand, V̂cts suffered from huge bias, especially when
N was small and n reg was large. The results are also
explained by our theoretical results in Proposition 3.2.

Variance: A larger n reg led to a smaller variance
of V̂cts as expected, but the effect of the variance
reduction was slight. Our V̂varts demonstrated the
smallest variance for all data sizes, as guaranteed in
Corollary 4.2.

MSE: The overall performance of the expected
response estimators was evaluated according to the
MSE. Our V̂varts performed the best and especially
outperformed the other baselines by a large margin
when N was small. This is because our estimator
greatly reduces the variance of V̂naive while retaining
its unbiasedness; the results empirically justified the
benefits of our estimator. On the other hand, V̂cts did
not improve the MSE of V̂naive because it had to deal
with the bias–variance tradeoff depending on the value
of n reg.

Estimation Error Tail Bound: We reported
the 99% upper confidence upper bound of the absolute
bias for each estimator to empirically test the property
discussed in Theorem 4.3. The results suggested that a
positive n reg does not improve the tail bound over the
naive estimator. On the other hand, V̂varts significantly
outperformed the others, which validated the theoretical
findings in Theorem 4.3 and empirically emphasized the
stability of our estimator.

5.3 Comparison of Treatment Policy Optimiza-
tion Algorithms We compared the proposed policy
optimization algorithms with the baseline algorithms.
In particular, we investigated the effects of #Train,
noise level, level of imbalance of treatment assign-
ment probabilities, #features, and the worst-case
performance.

5.3.1 Experimental Setup: We compared the fol-
lowing methods: SMA with KNN, SMA with elastic
net, SMA with random forest, CTS, VARTS with elas-
tic net, and VARTS with random forest. We iterated
the steps (2)–(3) below 50 times, and evaluate the per-
formance in terms of the means and standard deviations
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(a) #Trts = 4 (b) #Trts = 6 (c) Noise Level

(d) Level of Imbalance (e) #Features (f) Worst-Case

Figure 2: Performance of each method under each experimental condition.

of the expected responses of methods relative to the best
achievable values.

1. Generate training and test data for the corre-
sponding experimental conditions, and train each
method.

2. Sub-sample the test data with replacements.

3. Calculate the true expected response of the treat-
ment policy relative to the optimal expected re-
sponse as the performance metric.

Table 1 presents the experimental conditions. We
investigated each method’s performance by varying the
levels of the factors described in the Table. Note that
the level of each factor, except for the one being varied,
was fixed at the base level. In addition, we examined
the worst-case performance by comparing the worst
performances across the seven scenarios.

3Noise level is the conditional variance on the
observed outcome, i.e., σ2.

4These values represent the additive derivation of the treat-
ment assignment probabilities, i.e., if the level of imbalance is 0.10,

the treatment assignment probabilities of the four treatments are
(0.1, 0.2, 0.3, 0.4).

Table 1: Experimental Conditions.
factor base level levels

#Train 2000 500, 2000, 1000, 3000, 5000, 8000
#Trts 4 4, 6

Noise level3 1.0 0.5, 1.0, 1.5, 2.0, 3.0, 4.0
Level of imbalance4 0.00 0.0, 0.05, 0.10, 0.15

#Features 10 10, 30, 50, 70, 100
Worst case Average Seven Scenarios

5.3.2 Results Here, we present the results of our
experiments below.

#Train: Figure 2 (a) and (b) show that VARTS
performed the best in almost all situations. In par-
ticular, VARTS outperformed SMA(RF) and CTS by
a large margin, especially when #Train was small or
#Trts was large. Therefore, the benefits of our method
are emphasized when the training data size per treat-
ment is quite small. This result is because of the vari-
ance reduction effect of V̂varts. In contrast, the results
empirically suggest that the additional regularization of
CTS does not always improve the performance, and it
requires a large amount of training data to outperform
SMAs.

Noise level: Figure 2 (c) shows that
VARTS(ENet) and VARTS(RF) consistently out-
performed the other methods, especially when the
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Figure 3: Estimated expected response of each method
with the MineThat dataset.

noise level was high. This empirical finding verifies
that our VARTS can adjust to a noisy dataset for
effective treatment optimization. On the other hand,
CTS was negatively affected by the noise level and was
outperformed by SMAs when the noise level was high.
This implies that CTS may not be applicable to noisy
real-world datasets.

Imbalance: As shown in Figure 2 (d),
VARTS(ENet) and VARTS(RF) performed stably
with small sample treatments and outperformed the
others. This result is because our method reduces the
variance of its local expected response estimator by
utilizing counterfactual predictions; this implies that
the treatment assignment probabilities during RCT do
not necessarily need to be balanced.

#Features: Figure 2 (e) shows that VARTS per-
formed better than CTS and SMA(RF) even when #fea-
tures was large. This is because the cardinality of the
split set S increased with #features. CTS’s estimator
had a large variance or large estimation error. There-
fore, there is a greater chance that it chooses a sub-
optimal split as the number of estimation times in-
creases. On the other hand, VARTS largely removed
the effect of the #features because its local expected
response estimator was theoretically and empirically
proven to achieve a smaller variance and tighter esti-
mation error tail bound.

Worst-case: As shown in Figure 2 (f), VARTS sig-
nificantly outperformed the other methods with regard
to the worst-case performance. This property is essen-
tial for real-world applications because accurately eval-
uating the performance of treatment optimization al-
gorithms is almost impossible in reality, owing to the
missing counterfactual outcomes. Therefore, the result
demonstrates the stability and applicability of our algo-
rithm.

6 Real-World Experiment

Here we compared the proposed VARTS algorithm with
the baseline algorithms using a standard real-world
dataset.

6.1 Dataset Description In the experiment, the
MineThat Email Campaign Dataset5 was used. This
dataset contains 64000 RCT data of an email advertise-
ment campaign encouraging customers to visit a website
of a store. The outcomes were whether or not the cus-
tomers visited the website [1]. We aimed to optimize
the email advertisement allocation and maximize the
customers’ visits to the website.

6.2 Experimental Setup We compared SMA with
KNN, SMA with random forest, CTS, and VARTS
with random forest. We conducted 50 simulations with
different training/test splits and with different training
data sizes. We evaluated the methods in terms of their
means and standard errors of the expected response
estimated by (3.3) in the test sets.

6.3 Results Here, we present the performance of
the methods with the MineThat data. As shown in
Figure 3, VARTS performed the best, especially when
#Train was small. It obtained an improvement of
approximately 2% against the other methods when
#Train = 500 and improvements of approximately 13%
against SMA(KNN), 4% against SMA(RF), and 1.5%
against CTS when #Train = 8000.

Overall, CTS outperformed SMAs; while this result
is consistent with those of the previous experiment [5],
our method outperformed CTS by a large margin.

7 Conclusion

In this paper, we theoretically show that the previous
local expected response estimator used in CTS is bi-
ased because of the regularization for variance reduc-
tion. To improve the previous method, we propose a
variance reduced estimator and a corresponding algo-
rithm. Our theoretical analysis showed that our esti-
mator achieves a smaller variance and tighter estimation
error tail bound than the naive one while remaining un-
biased for the true expected response. Furthermore, our
estimator empirically outperformed the other baselines,
especially when the sample size was small. In contrast,
a positive value for the n reg hyperparameter of CTS
reduced the variance, but the variance reduction effect
was slight and produced a huge bias. Moreover, VARTS
demonstrated a state-of-the-art performance for realis-

5available at https://blog.minethatdata.com/2008/03/
minethatdata-e-mail-analytics-and-data.html.
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tic synthetic datasets with small sample sizes, unbal-
anced treatment assignments, and high noise levels. In
addition, it showed the most stable and best worst-case
performance when applied to a range of data generat-
ing processes. Finally, experiments on a standard real-
world dataset verified the effectiveness and reliability of
our method.

As future work, the development of a reliable eval-
uation metric will be an important topic. VARTS has
many hyperparameters, and accurate parameter tuning
is required to obtain the optimal policy. An accurate
evaluation metric would make VARTS more versatile
and improve its performance.

The full version of the paper is available at
https://usaito.github.io/files/varts.pdf
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Supplementary Material

A Proofs

Proposition 3.1. The following holds for any φ ⊂ X
and t ∈ T .

V (φ, t) = EDφ [Znaive(i, t)]

Proof.

EDφ [Znaive(i, t)] = EDφ
[
Y obs
i I{Wi = t}

p(t)

]
∵ (3.2)

= EDφ

[
Y

(t)
i

p(t)
EWi [I{Wi = t}]

]
= EXi

[
EYi

[
Y

(t)
i |Xi ∈ φ

]]
= V (φ, t)

Proposition 3.2. Suppose V (φ′, t) 6= V (φ, t), then,

V (φ′, t) 6= EDφ′ [Zcts(i, t)]

Proof. Given V (φ′, t) 6= V (φ, t), there exists a constant
value C ∈ R\{0} which satisfies the following:

V (φ, t) = V (φ′, t) + C

Hence,

EDφ′ [Zcts(i, t)] =
p(t)

p(t) + n reg
V (φ′, t)

+
n reg

p(t) + n reg
V (φ, t)

=
p(t)

p(t) + n reg
V (φ′, t)

+
n reg

p(t) + n reg
(V (φ′, t) + C)

6= V (φ′, t)

Theorem 4.1. The following holds for any φ ⊂ X and
t ∈ T .

V (φ, t) = EDφ [Zvarts(i, t)]

Proof.

EDφ [Zvarts(i, t)]

= EDφ


(
Y obs
i − µ̂(t)

i

)
I{Wi = t}

p(t)
+ µ̂

(t)
i

 ∵ (4.7)

= EDφ

[
Y

(t)
i − µ̂(t)

i

p(t)
EWi [I{Wi = t}] + µ̂

(t)
i

]
= EXi

[
EYi

[
Y

(t)
i |Xi ∈ φ

]]
= V (φ, t)

Theorem 4.2. The following equations hold:

VDφ (Znaive(i, t)) = EDφ
[
ε2
]

+ VX

(
µ
(t)
i |X ∈ φ

)
+

1− p(t)

p(t)
EX

[(
µ
(t)
i

)2
|X ∈ φ

]
(D.1)

VDφ (Zvarts(i, t)) = EDφ
[
ε2
]

+ VX

(
µ
(t)
i |X ∈ φ

)
+

1− p(t)

p(t)
EX

[(
µ
(t)
i − µ̂

(t)
i

)2
|X ∈ φ

]
(D.2)

where ε =

(
Y obs
i −µ(t)

i

)
I{Wi=t}

p(t)
.

Proof. We prove (D.2), then use it to prove (D.1). The
second moment of the random variable (4.7) is:

EDφ
[
Z2
varts(i, t)

]
= EDφ

[((
µ̂
(t)
i − µ

(t)
i

)(
1− I{Wi = t}

p(t)

)
+ µ

(t)
i + ε

)2
]

= EDφ
[
ε2
]

+ EXi

[(
µ
(t)
i

)2
|X ∈ φ

]
+ EWi,Xi

[(
µ̂
(t)
i − µ

(t)
i

)2(
1− I{Wi = t}

p(t)

)2

|X ∈ φ

]

= EDφ
[
ε2
]

+ EXi

[(
µ
(t)
i

)2
|X ∈ φ

]
+

1− p(t)

p(t)
EXi

[(
µ̂
(t)
i − µ

(t)
i

)2
|X ∈ φ

]
Thus, the variance of (4.7) is:

VDφ (Zvarts(i, t))

= EDφ
[
Z2
varts(i, t)

]
−
(
EDφ [Zvarts(i, t)]

)2
= EDφ

[
ε2
]

+ EXi

[(
µ
(t)
i

)2
|X ∈ φ

]
+

1− p(t)

p(t)
EXi

[(
µ
(t)
i − µ̂

(t)
i

)2
|X ∈ φ

]
−
(
EX

[
µ
(t)
i |X ∈ φ

])2
= EDφ

[
ε2
]

+ VXi

(
µ
(t)
i |X ∈ φ

)
+

1− p(t)

p(t)
EXi

[(
µ
(t)
i − µ̂

(t)
i

)2
|X ∈ φ

]
We have VDφ (Zvarts(i, t)) by replacing µ̂

(t)
i with 0.

Corollary 4.1. (Unbiasedness) Our local expected
response estimator (4.9) is unbiased for the true local
expected response:

V (φ, t) = EDφ
[
V̂varts (φ, t)

]
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Proof.

EDφ
[
V̂varts (φ, t)

]
= EDφ

 1

nφ

∑
i:xi∈φ

Zvarts (i, t)


=

1

nφ

∑
i:xi∈φ

EDφ [Zvarts (i, t)]

= V (φ, t) ∵ Theorem 4.1

Corollary 4.2. (Smaller variance) Our local ex-
pected response estimator (4.9) achieves a smaller vari-
ance than the naive estimator (3.3) with (4.8).

VDφ
(
V̂varts (φ, t)

)
< VDφ

(
V̂naive (φ, t)

)
Proof. Suppose that Znaive (i, t) and Zvarts (i, t) are in-
dependent bounded random variables. Then, we have:

VDφ

 1

nφ

∑
i:xi∈φ

Zcts (i, t)


=

1

n2φ

∑
i:xi∈φ

VDφ (Zcts (i, t))

=
1

nφ

(
EDφ

[
ε2
]

+ VX

(
µ
(t)
i |X ∈ φ

)
+

1− p(t)

p(t)
EX

[(
µ
(t)
i

)2
|X ∈ φ

])
∵ Theorem 4.2(D.3)

Similarly we obtain:

VDφ

 1

nφ

∑
i:xi∈φ

Zvarts (i, t)


=

1

n2φ

∑
i:xi∈φ

VDφ (Zvarts (i, t))

=
1

nφ

(
EDφ

[
ε2
]

+ VX

(
µ
(t)
i |X ∈ φ

)
+

1− p(t)

p(t)
EX

[(
µ
(t)
i − µ̂

(t)
i

)2
|X ∈ φ

])
∵ Theorem 4.2

The only difference between VDφ
(
V̂varts (φ, t)

)
and

VDφ
(
V̂naive (φ, t)

)
is the third term in brackets. Hence,

this completes the proof when (4.8) holds.

Lemma A.1. (Hoeffding’s Inequality [22])
Independent bounded random variables Z1, ..., Zn that

take values in intervals of sizes ζ1, ..., ζn satisfy the
following inequality for any ε > 0.

P

(∣∣∣∣∣
n∑
i=1

Zi − E

[
n∑
i=1

Zi

]∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−2ε2∑n
i=1 ζ

2
i

)
See Theorem 2 in [22] for the proof.

Theorem 4.3. (Estimation error tail bound)

Let {(xi, (y(0)i , y
(1)
i , . . . , y

(T−1)
i ))}Ni=1 be an arbitrary

set of N independently sampled realizations. Note

that p(t) = P (Wi = t) is the probability of y
(t)
i being

observed. Then, for any δ ∈ (0, 1), the following
inequalities hold with the probability of at least 1− δ:

∣∣∣V̂naive (φ, t)− V (φ, t)
∣∣∣ ≤ 1

nφ

√√√√ log 2
δ

2

∑
i:xi∈φ

ρ2i

∣∣∣V̂varts (φ, t)− V (φ, t)
∣∣∣ ≤ 1

nφ

√√√√ log 2
δ

2

∑
i:xi∈φ

ξ2i

where ρi =
yobsi

p(t)
, ξi =

yobsi −µ̂(t)
i

p(t)
.

Proof. Given the N independently sampled realiza-

tions., we put Zi =

(
yobsi −µ̂(t)

i

)
I{Wi=t}

p(t)
+ µ̂

(t)
i . Accord-

ingly, we have:

P

Zi =

(
yobsi − µ̂(t)

i

)
p(t)

+ µ̂
(t)
i

 = p(t),

P
(
Zi = µ̂

(t)
i

)
= 1− p(t)

Here, we apply Hoeffding’s Inequality in Lemma A.1 to
the random variables:

P

∣∣∣∣∣∣ 1

nφ

∑
i:xi∈φ

Zi − E

 1

nφ

∑
i:xi∈φ

Zi

∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
−2n2φε

2∑
i:xi∈φ ξ

2
i

)

⇔ P
(∣∣∣V̂varts (φ, t)− V (φ, t)

∣∣∣ ≥ ε) ≤ 2 exp

(
−2n2φε

2∑
i:xi∈φ ξ

2
i

)

We put 2 exp

(
−2n2

φε
2∑

i:xi∈φ
ξ2i

)
= δ and solve this equation

for ε, yielding:

P

∣∣∣V̂varts (φ, t)− V (φ, t)
∣∣∣ ≤ 1

nφ

√√√√ log 2
δ

2

∑
i:xi∈φ

ξ2i

 ≥ 1−δ

Finally, replacing ξi with ρi completes the proof.
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CTS estimator VARTS estimator

base random variable (3.6) (4.7)
unbiasedness × (Proposition 3.2) X (Corollary 4.1)

smaller variance N/A X (Corollary 4.2)
tighter error bound N/A X (Theorem 4.3)

Table 2: Comparison of local expected response esti-
mators. Unbiasedness is with regard to the true local
expected response. The variance and error bound are
compared with those of the naive estimator.

E Detailed Experimental Setups

E.1 Dataset Generating Procedure The syn-
thetic datasets comprised seven scenarios based on the
simulation study in [21] with the following elements:

1. The number N of samples in the training set, num-
ber p of features, treatment assignment probabili-
ties p(t) for each treatment, and conditional vari-
ance σ2 of Y obs

i . The definitions of these variables
depend on the experimental condition (Table 1).

2. The distribution DX of the feature vectors.
Odd-numbered features were drawn independently
from a standard Gaussian distribution, and even-
numbered features were drawn independently from
a Bernoulli distribution with the probability 1/2.

Given these elements, our data generation model is

for n = 1, 2, . . . , N :

Xi
i.i.d.∼ DX,

wi = Categorical
(
{p(0), . . . , p(T−1)}

)
,

y
(t)
i = µ (Xi) + τ (t) (Xi) , ∀t ∈ {0, 1, . . . , T − 1},

yobsi ∼ Normal
(
y
(wi)
i , σ2

)
.

E.2 Used Functions We used the following func-
tions for µ and τ :

Group 1 :

f1-1(x) = 6I{x0>1} − 6cdf(−1),

f1-2(x) = 6I{x2>1} − 6cdf(−1),

f1-3(x) = 6I{x4>1} − 6cdf(−1).

Group 2 :

f2-1(x) = 5x0,

f2-2(x) = 2x2 − 1,

f2-3(x) = 4x4 − 2.

Group 3 :

f3-1(x) = x1x3x5 + 2x1x3(1− x5) + 3x1(1− x3)x5

+ 4x1(1− x3)(1− x5) + 5(1− x1)x3x5 + 6(1− x1)x3(1− x5)

+ 7(1− x1)(1− x3)x5 + 8(1− x1)(1− x3)(1− x5)− 4.5,

f3-2(x) = 3x1x3x5 − 2x1x3(1− x5) + 5x1(1− x3)x5

− 3x1(1− x3)(1− x5)− (1− x1)x3x5 + 7(1− x1)x3(1− x5)

+ (1− x1)(1− x3)x5 − 4(1− x1)(1− x3)(1− x5)− 0.5,

f3-3(x) = 2x1x3x5 + 4x1x3(1− x5)− 3x1(1− x3)x5

+ 2x1(1− x3)(1− x5) + 2(1− x1)x3x5 + (1− x1)x3(1− x5)

− 3(1− x1)(1− x3)x5 − (1− x1)(1− x3)(1− x5)− 0.5.

Group 4 :

f4-1(x) = x0 + x2 + x4 + x6 + x7 + x8 − 0.5,

f4-2(x) = x0 − x2 + x4 + x5 − x6 − x8,
f4-3(x) = x0 − x2 + x3 + x4 − x6 − x8.
Group 5 :

f5-1(x) = 4I{x0>1}I{x2>0} + 4I{x4>1}I{x6>0} + 2x7x8 − 4cdf(−1),

f5-2(x) = 4I{x2>1}I{x4>0} + 4I{x6>1}I{x8>0} + 2x4x5 − 8cdf(−1),

f5-3(x) = 4I{x0>1}I{x8>0} + 4I{x2>1}I{x6>0} + 2x2x3 − 8cdf(−1).

Group 6 :

f6-1(x) =
1√
2

(
x20 + x1 + x22 + x3 + x24 + x5 + x26 + x7 + x28 − 7

)
,

f6-2(x) =
1√
2

(
2x1 + x22 + 2x3 + 2x5 + x26 + 2x7 − 5.5

)
,

f6-3(x) =
1√
2

(
x20 + 4x1 + 4x3 + x24 + 4x5 + x26 + 4x7 + x28 − 11

)
.

Group 7 :

f7-1(x) =
1√
2

(f3−1 (x) + f4−1 (x)) ,

f7-2(x) =
1√
2

(f3−2 (x) + f4−2 (x)) ,

f7-3(x) =
1√
2

(f3−3 (x) + f4−3 (x)) .

where x = [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9]
>

, and
cdf(·) is the cumulative distribution function of a stan-
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dard Gaussian distribution.

Table 3: Specifications of the seven scenarios.
Scenarios 1 2 3 4 5 6 7

µ(·) f4-1 f3-1 f6-1 f2-1 0 f1-1 f5-1
τ (0)(·) −f1-1 −f2-1 −f3-1 −f4-1 −f5-1 −f6-1 −f7-1
τ (1)(·) f1-1 f2-1 f3-1 f4-1 f5-1 f6-1 f7-1
τ (2)(·) −f1-2 −f2-2 −f3-2 −f4-2 −f5-2 −f6-2 −f7-2
τ (3)(·) f1-2 f2-2 f3-2 f4-2 f5-2 f6-2 f7-2
τ (4)(·) −f1-3 −f2-3 −f3-3 −f4-3 −f5-3 −f6-3 −f7-3
τ (5)(·) f1-3 f2-3 f3-3 f4-3 f5-3 f6-3 f7-3

E.3 Hyper-parameter Selection Table 4 and 5
summarize the searching space of the hyper-parameters
for each dataset. Standard methods of hyper-parameter
tuning, such as cross-validation, are not directly appli-
cable to uplift modeling because the real-world prob-
lems have a realization from only one potential outcome.
Therefore, we used only the feature vectors (xi), the
observed outcome (yobsi ), and the treatment assignment
(wi) during the parameter-tuning procedure, because
all of them can be used in real-world settings. The set
of hyper-parameters maximizing the estimated expected
response on the validation data was selected.

Note that for the synthetic experiment, we re-
lied on general 3fold cross-validation for the parame-
ter selection. On the other hand, for the real-world
datasets, we used the software, Optuna6. n estimators
and min samples leaf of the algorithms based on the
tree structure (i.e., SMA(RF), CTS, and VARTS) were
fixed at 100 and 10, respectively for all of the datasets.

Table 4: Hyper-parameter searching space for the syn-
thetic data.

methods tuned parameter space

SMA(KNN) n neighbors {10, 15, 20, 25}
SMA(ENet) l2-regularization parameter {10−3, 10−2, 10−1, 1}
SMA(RF) max depth {5, 10, 15, 20}

CTS max depth {5, 10, 15, 20}
n reg {0, 1, 2, 3 }

VARTS max depth {5, 10, 15, 20}

6https://optuna.org

Table 5: Hyper-parameter searching space for the
MineThat data.

methods tuned parameter space

SMA(KNN) n neighbors [20, 50]
SMA(RF) max depth [5, 20]

CTS max depth [5, 20]
n reg {0, 1, 2, 3 }

VARTS(RF) max depth of VARTS [5, 20]
max depth of RF [5, 20]
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