Unbiased Recommender Learning from Missing-Not-At-Random Implicit Feedback

Yuta Saito, Suguru Yaginuma, Yuta Nishino,
Hayato Sakata, and Kazuhide Nakata
Web Search and Data Mining (WSDM20)
February 4th, 2020 (Tue)
Introduction & Problem Setting
Objective of Recommendation

Recommend **Relevant (R) Items** to Each User!!!

example) Top-3 Recommendation

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Recommender A</th>
<th>Recommender B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R=1</td>
<td>R=0</td>
</tr>
<tr>
<td>2</td>
<td>R=1</td>
<td>R=1</td>
</tr>
<tr>
<td>3</td>
<td>R=1</td>
<td>R=0</td>
</tr>
<tr>
<td>9</td>
<td>R=0</td>
<td>R=1</td>
</tr>
<tr>
<td>10</td>
<td>R=0</td>
<td>R=1</td>
</tr>
</tbody>
</table>

Recommender A is better than **Recommender B** simply because **Recommender A** recommends more relevant items.
Ideal Loss function of Interest (Pointwise)

To maximize relevance, the following loss should be optimized.

Definition) Ideal Pointwise Loss Function

\[
\mathcal{L}_{\text{ideal}}^{\text{point}}(\hat{R}) = \frac{1}{|\mathcal{D}|} \sum_{(u,i) \in \mathcal{D}} \left[R_{u,i} \delta^{(1)}(\hat{R}_{u,i}) + (1 - R_{u,i}) \delta^{(0)}(\hat{R}_{u,i}) \right]
\]

Binary Relevance Indicator of u and i
Ideal Loss function of Interest (Pointwise)

To maximize relevance, the following loss should be optimized:

Definition) Ideal Pointwise Loss Function

\[
\mathcal{L}_{\text{ideal}}^{\text{point}}(\hat{R}) = \frac{1}{|\mathcal{D}|} \sum_{(u,i) \in \mathcal{D}} \left[R_{u,i} \delta^{(1)}(\hat{R}_{u,i}) + (1 - R_{u,i}) \delta^{(0)}(\hat{R}_{u,i}) \right]
\]

Prediction for relevance level of u and i
Ideal Loss function of Interest (Pointwise)

To maximize relevance, the following loss should be optimized

Definition) Ideal Pointwise Loss Function

$$
\mathcal{L}_{\text{ideal}}^{\text{point}}(\hat{R}) = \frac{1}{|\mathcal{D}|} \sum_{(u,i) \in \mathcal{D}} \left[R_{u,i} \delta^{(1)}(\hat{R}_{u,i}) + (1 - R_{u,i}) \delta^{(0)}(\hat{R}_{u,i}) \right]
$$

Example) Cross-entropy loss

$$
\delta^{(1)}(\hat{R}_{u,i}) = - \log(\hat{R}_{u,i}), \quad \delta^{(0)}(\hat{R}_{u,i}) = - \log(1 - \hat{R}_{u,i})
$$

Arbitrary loss function (e.g., cross-entropy, squared loss)
Challenge: Relevance Label is hard to collect

It is desirable to optimize ideal loss function for our objective of relevance maximization
Challenge: Relevance Label is hard to collect

It is desirable to optimize ideal loss function for our objective of relevance maximization.

However, it is often *Expensive* or *Time Consuming* to use relevance information as the label.

- **Explicit Rating Feedback** (Time Consuming)
- **Expert Annotation** (Expensive, Time Consuming)
- **Crowdsourcing** (Time Consuming, Noisy)
Alternative Solution: Implicit Feedback

Implicit Feedback is *Cheap* and *Easy to collect* and used as an alternative for the Relevance Label

Implicit Feedback $Y_{u,i}$

- Natural user behaviour (clicks, views, log-in)
- Easily collected in real-world recommender systems
- Used by many Tech companies
Why not use Implicit Feedback as Relevance Label???

One possible way to use implicit feedback is **direct imputation**

\[
\text{ideal loss} \quad \frac{1}{|D|} \sum_{(u,i) \in D} \left[R_{u,i} \delta_{u,i}^{(1)} + (1 - R_{u,i}) \delta_{u,i}^{(0)} \right]
\]

\[
\text{imputed loss} \quad \frac{1}{|D|} \sum_{(u,i) \in D} \left[Y_{u,i} \delta_{u,i}^{(1)} + (1 - Y_{u,i}) \delta_{u,i}^{(0)} \right]
\]

Neural Collaborative Filtering (He et al.) optimizes the imputed loss function by DNN
Why not use Implicit Feedback as Relevance Label???

One possible way to use implicit feedback is direct imputation.

ideal loss
\[
\frac{1}{|\mathcal{D}|} \sum_{(u,i) \in \mathcal{D}} \left[R_{u,i} \delta_{u,i}^{(1)} + (1 - R_{u,i}) \delta_{u,i}^{(0)} \right]
\]

imputed loss
\[
\frac{1}{|\mathcal{D}|} \sum_{(u,i) \in \mathcal{D}} \left[Y_{u,i} \delta_{u,i}^{(1)} + (1 - Y_{u,i}) \delta_{u,i}^{(0)} \right]
\]

Question: Is this direct imputation valid?
Implicit Feedback ≠ Relevance

example) Top-2 recommendation by most-popular policy

<table>
<thead>
<tr>
<th>Item Ranking</th>
<th>Recommended?</th>
<th>Relvance (R)</th>
<th>???</th>
<th>Click (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes!</td>
<td>R=1</td>
<td></td>
<td>Y=1</td>
</tr>
<tr>
<td>2</td>
<td>Yes!</td>
<td>R=0</td>
<td></td>
<td>Y=0</td>
</tr>
<tr>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>99</td>
<td>No...</td>
<td>R=1</td>
<td></td>
<td>Y=0</td>
</tr>
<tr>
<td>100</td>
<td>No...</td>
<td>R=0</td>
<td></td>
<td>Y=0</td>
</tr>
</tbody>
</table>

It seems
Implicit Feedback

is **not**
equal to

Relevance Label
Exposure Model (Liang et al., WWW’16)

Exposure model assumes the following connection between implicit feedback and relevance label:

\[Y_{u,i} = O_{u,i} \cdot R_{u,i} \]

- **Implicit Feedback** (e.g., click)
- **Exposure Variable** *(unobserved)*
- **Relevance Variable** *(unobserved)*

Item is **clicked** = Item is **exposed** & Item is **relevant**
Exposure Model (Liang et al., WWW’16)

Exposure model also assumes the following decomposition

\[
P(Y_{u,i} = 1) = P(O_{u,i} = 1) \cdot P(R_{u,i} = 1)
\]

- \(P(Y_{u,i} = 1)\): click prob
- \(P(O_{u,i} = 1)\): exposure prob
- \(P(R_{u,i} = 1)\): relevance level

\[
= \theta_{u,i} \cdot \gamma_{u,i}
\]

This assumption is equivalent to the **Unconfoundedness** in causal inference.
Implicit Feedback ≠ Relevance

example) Top-2 recommendation by most-popular policy

<table>
<thead>
<tr>
<th>Item Ranking</th>
<th>Recommended?</th>
<th>Relvance (R)</th>
<th>Exposure (O)</th>
<th>Click (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes!</td>
<td>R=1</td>
<td>O=1</td>
<td>Y=1</td>
</tr>
<tr>
<td>2</td>
<td>Yes!</td>
<td>R=0</td>
<td>O=1</td>
<td>Y=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>No...</td>
<td>R=1</td>
<td>O=0</td>
<td>Y=0</td>
</tr>
<tr>
<td>100</td>
<td>No...</td>
<td>R=0</td>
<td>O=0</td>
<td>Y=0</td>
</tr>
</tbody>
</table>

Exposure Model can clearly explain the situation
Implicit Feedback ≠ Relevance

eexample) Top-2 recommendation by most-popular policy

<table>
<thead>
<tr>
<th>Item Ranking</th>
<th>Recomended?</th>
<th>Relvance (R)</th>
<th>Exposure (O)</th>
<th>Click (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes!</td>
<td></td>
<td></td>
<td>Y=1</td>
</tr>
<tr>
<td>2</td>
<td>Yes!</td>
<td></td>
<td></td>
<td>Y=0</td>
</tr>
<tr>
<td>99</td>
<td>No...</td>
<td></td>
<td></td>
<td>Y=0</td>
</tr>
<tr>
<td>100</td>
<td>No...</td>
<td></td>
<td></td>
<td>Y=0</td>
</tr>
</tbody>
</table>

The problem is how to optimize R using only Y

Exposure Model characterizes the difficulties
Challenge 1: Positive-Unlabeled (PU)

Only positive-side feedback is observed, and the negative feedback is always unobserved.

\[Y_{u,i} = O_{u,i} \cdot R_{u,i} \]

\[Y_{u,i} = 0 \quad \Rightarrow \quad R_{u,i} = 0 \]

The lack of implicit feedback doesn’t imply irrelevance between u and i.
Challenge 2: Missing-Not-At-Random (MNAR)

The positive-labels of some items are much more frequently observed (popularity bias)

\[P(Y_{u,i} = 1) = P(O_{u,i} = 1) \cdot P(R_{u,i} = 1) \]

Exposure probability is not uniform among user-item pairs
In summary,

● We want to maximize *relevance* in recsys using only available *implicit feedback*

● How to define theoretically justified loss function with implicit feedback is the critical problem

● We aimed to *statistically estimate* the ideal loss func using only implicit feedback in our work
Solutions & Experiments
Our Approach: Unbiased Estimation of Ideal Loss Function

We propose the **first unbiased estimator** combining the inverse propensity weighting & positive-unlabeled learning

ideal loss

\[
\frac{1}{|D|} \sum_{(u,i) \in D} \left[R_{u,i} \delta_{u,i}^{(1)} + (1 - R_{u,i}) \delta_{u,i}^{(0)} \right]
\]

unbiased loss

\[
\frac{1}{|D|} \sum_{(u,i) \in D} \left[\frac{Y_{u,i}}{\theta_{u,i}} \delta_{u,i}^{(1)} + \left(1 - \frac{Y_{u,i}}{\theta_{u,i}} \right) \delta_{u,i}^{(0)} \right]
\]
Our Approach: Unbiased Estimation of Ideal Loss Function

We propose the first unbiased estimator combining the inverse propensity weighting & positive-unlabeled learning

\[
\hat{L}_{\text{unbiased}}(\hat{R}) = \frac{1}{|D|} \sum_{(u,i) \in D} \left[\frac{Y_{u,i}}{\theta_{u,i}} \delta^{(1)}_{u,i} + \left(1 - \frac{Y_{u,i}}{\theta_{u,i}}\right) \delta^{(0)}_{u,i} \right]
\]

The basic idea is to weight each implicit feedback by the inverse of the exposure parameter (the propensity score)
Our Approach: Unbiased Estimation of Ideal Loss Function

This estimator is proved to be theoretically unbiased for the ideal loss function.

\[
\mathbb{E} \left[\hat{L}_{\text{unbiased}}^{\text{point}} (\hat{R}) \right] = \mathcal{L}_{\text{ideal}}^{\text{point}} (\hat{R})
\]

The proposed loss function \(\mathcal{L}_{\text{unbiased}}^{\text{point}} (\hat{R}) \)

The ideal loss function \(\mathcal{L}_{\text{ideal}}^{\text{point}} (\hat{R}) \)
Summary of Solutions to the Challenges

Our main contribution is to develop the first unbiased loss func for the ideal loss func using only implicit feedback

<table>
<thead>
<tr>
<th>Approach</th>
<th>Unbiased?</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMF (Hu et al., ICDM’08)</td>
<td>No...</td>
</tr>
<tr>
<td>ExpoMF (Liang et al., WWW’16)</td>
<td>No...</td>
</tr>
<tr>
<td>Rel-MF (saito et al., WSDM’20)</td>
<td>Yes!</td>
</tr>
</tbody>
</table>
Real-World Experiment (with Yahoo! R3 dataset)

We conduct performance comparisons using Yahoo data

Yahoo! R3 dataset

- contains *ground-truth relevance label* (5 star-rating)
- contains train-test data with *different item distributions*

This dataset is convenient for the evaluation of Implicit feedback recommenders with MNAR formulation
Real-World Experiment (with Yahoo! R3 dataset)

The unbiased Rel-MF generally outperforms the others

For all items

<table>
<thead>
<tr>
<th></th>
<th>DCG@5</th>
<th>Recall@5</th>
<th>MAP@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMF (Hu et al., ICDM’08)</td>
<td>0.363</td>
<td>0.502</td>
<td>0.277</td>
</tr>
<tr>
<td>ExpoMF (Liang et al., WWW’16)</td>
<td>0.402</td>
<td>0.530</td>
<td>0.321</td>
</tr>
<tr>
<td>Rel-MF (saito et al., WSDM’20)</td>
<td>0.485</td>
<td>0.582</td>
<td>0.407</td>
</tr>
</tbody>
</table>
Real-World Experiment (with Yahoo! R3 dataset)

Ours also outperforms for the rare items

For rare items

<table>
<thead>
<tr>
<th>Model</th>
<th>DCG@5</th>
<th>Recall@5</th>
<th>MAP@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMF</td>
<td>0.329</td>
<td>0.526</td>
<td>0.242</td>
</tr>
<tr>
<td>(Hu et al., ICDM’08)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExpoMF</td>
<td>0.382</td>
<td>0.557</td>
<td>0.307</td>
</tr>
<tr>
<td>(Liang et al., WWW’16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel-MF</td>
<td>0.428</td>
<td>0.593</td>
<td>0.345</td>
</tr>
<tr>
<td>(saito et al., WSDM’20)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Implicit feedback is often used but is biased
 (positive-unlabeled & missing-not-at-random)
- Previous solutions are **biased** for the ideal loss function
- We proposed the **first unbiased loss function** for
 unbiasedly learning recsys from biased implicit feedback

Thank you for Listening & Please Come to the Poster !!!
Appendix
How to estimate the propensity score?

We used the simple relative item popularity as the propensity score

$$\hat{\theta}_{*,i} = \left(\frac{\sum_{u \in U} Y_{u,i}}{\max_{i \in T} \sum_{u \in U} Y_{u,i}} \right)^{\eta}$$

A more sophisticated way of estimating propensities is a future work
Previous Solutions to the Challenges

Weighted Matrix Factorization (WMF) and **Exposure Matrix Factorization (ExpoMF)** are the most basic methods.

<table>
<thead>
<tr>
<th></th>
<th>Approach</th>
<th>Unbiased?</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMF (Hu et al., ICDM’08)</td>
<td>Positive sample weighting</td>
<td>No...</td>
</tr>
<tr>
<td>ExpoMF (Liang et al., WWW’16)</td>
<td>EM Algorithm</td>
<td>No...</td>
</tr>
</tbody>
</table>
Previous Solutions are biased for the ideal loss func

In the paper, the loss function of the previous methods are proved to be *biased*, i.e.,

\[
\mathbb{E} \left[\hat{\mathcal{L}}_{WMF}(\hat{R}) \right] \neq \mathcal{L}_{ideal}^{\text{point}}(\hat{R})
\]

\[
\mathbb{E} \left[\hat{\mathcal{L}}_{ExpMF}(\hat{R}) \right]
\]
Future Work

- Propensity score estimation
- Unbiased estimator for the pairwise method
 (e.g., unbiased version of bayesian personalized ranking)
- Theoretical Analysis on the Learnability
- Possible connection with other types of feedback

References

(Liang et al., UAI’16 Causal WS): Dawen Liang, Laurent Charlin, and David M Blei. 2016. In Causation: Foundation to Application, Workshop at UAI.