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ABSTRACT
There is intense attention in applying machine learning to make
causal inference in fields such as marketing, economics, and educa-
tion. In particular, individual-level treatment effect (ITE) prediction
has important applications such as personalized recommendation
and precision medicine. Most of the previous papers study predic-
tion methods of the ITE. On the other hand, how to evaluate given
ITE predictors from observable data has not yet been thoroughly
investigated despite that it plays the critical part of causal inference.
In this paper, we propose a method to effectively select the best
ITE predictors from a set of candidates using only observational
validation set.
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1 INTRODUCTION
Predicting Individual-level Treatment Effects (ITE) of treatments
is essential to optimize the metric of interest in various domains.
For example, recommendation systems wish to recommend items
having positive causal effects on users preferences to maximize
user experiences.

Most of the previous studies propose machine-learning based
ITE prediction methods and achieve promising results on some
benchmark datasets. On the other hand, the evaluation of these
prediction methods is another essential step to conduct valid model
selection and hyperparameter tuning. However, the evaluation
problem of ITE prediction models has not much yet studied in spite
of its importance.

In this paper, we propose a model validation procedure called
CounterFactual Cross-Validation (CF-CV) that accurately ranks the
performance of ITE predictors with high confidence using only
factual validation set. Our proposed evaluation procedure satisfies
desirable theoretical properties to be used for model selection or
hyperparameter tuning of ITE predictors. Moreover, experimental
results show that our proposed method effectively ranks candidate
ITE predictors and select a better predictor among a set of candi-
dates. Besides, the model selection performance of our method is
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stable, and this is critical because we never know the true perfor-
mance of any ITE predictors due to the existence of counterfactuals.

2 PROBLEM FORMULATION
We denote X ∈ X as the feature vector and T ∈ {0, 1} as a bi-
nary treatment assignment indicator. Here, we follow the potential
outcome framework [4] and assume that there exist two potential
outcomes denoted as

(
Y (0),Y (1)

)
∈ Y ×Y for each individual. Y (0)

is a potential outcome associated with T = 0, on the other hand,
Y (1) is associated with T = 1.

Now let us formally define the Individual-level Treatment
Effect (ITE) for an individual with a feature vector x ∈ X as:

τ (x) = E
[
Y (1) − Y (0) |X = x

]
(1)

Next, we define the conditional probability of treatment assignment
as e (x) = P (T = 1 |X = x). This parameter is called propensity
score in causal inference and widely used to estimate treatment
effects from observational data [4]. Throughout this paper, we make
the standard assumptions in causal inference including Unconfound-
edness, Overlap, and Consistency [4].

In previous studies [2, 5], the evaluation of an ITE predictor τ̂ (·)
is formulated as accurately estimating the following metric from
observational validation datasetV = {Xi ,Ti ,Y

obs
i } as:

Rtrue (τ̂ ) = EX
[
(τ (X ) − τ̂ (X ))2

]
(2)

Here, Rtrue is the true performance metric of an ITE predictor τ̂ (·).
In this paper, we aim to construct a performance estimator R̂ (τ̂ )
satisfying the following condition:

Rtrue (τ̂ ) ≤ Rtrue
(
τ̂ ′
)
⇒ R̂ (τ̂ ) ≤ R̂

(
τ̂ ′
)
, ∀ τ̂ , τ̂ ′ ∈ M . (3)

whereM = {τ̂1, ..., τ̂ |M |} is a set of candidate ITE predictors.
An estimator satisfying Eq. (3) gives accurate ranking of can-

didate predictors by the true metric values, and one can select the
best model among M.

3 METHOD
To achieve our goal, we consider the following feasible estimator
of the performance metric:

R̂ (τ̂ ) =
1
n

n∑
i=1

(τ̃ (Xi ) − τ̂ (Xi ))
2 (4)

where τ̃ (·) is called the oracle and is constructed from V . Un-
der our formulation, we aim to answer the question: What is the
best plug-in oracle to rank the performance of given candidate ITE
predictors from observational validation dataset?

3.1 Proposed Oracle
Here we define our proposed oracle inspired by the doubly robust
estimator used to estimate average causal effects of treatments [1].
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Definition 3.1. Let f (·, ·) : X×T → Y be a hypothesis predicting
potential outcomes and is defined as f (x , t) = h (Φ(x), t). Then, the
doubly robust oracle for a given data (X ,T ,Yobs ) is defined as:

τ̃ (X ,T ,Yobs ) =
T

e(X )

(
Yobs − f (X , 1)

)
−

1 −T

1 − e(X )

(
Yobs − f (X , 0)

)
+ (f (X , 1) − f (X , 0)) (5)

where, the loss function to derive a hypothesis h and a representa-
tion function Φ is:

h,Φ = min
h,Φ

1
n

n∑
i=1

w(t )(xi ) · L (h (Φ (xi ) , ti ) ,yi ) + λ · Ω(h)

+ α · IPMG
(
{Φ (xi )}i :ti=0 , {Φ (xi )}i :ti=1

)
(6)

where, L(·, ·) is squared loss, Ω(h) is the regularization term for
model complexity, and IPMG

(
{Φ (xi )}i :ti=0 , {Φ (xi )}i :ti=1

)
is called

Integral Probability Metric (IPM) measuring distance between two
distributions [6, 7]. Finally,w(t )(x) = t (1−2e(x ))+e(x )2

e(x )(1−e(x )) is a weighting
function depending on the propensity score.

3.2 Summary of Theoretical Results
Here, we state critical theoretical results for our proposed oracle
and the resulting performance estimator 1.

Current Theoretical Results

1. The performance estimator based on our oracle in Eq. (5)
preserves the difference between the true metric values; the
predictor having the smallest expected value of our perfor-
mance estimator among candidate predictors also has the
smallest value of Rtrue among them.

2. Our oracle minimizes the upper bound of the finite sample
uncertainty term in the empirical version of the performance
estimator in Eq. (4).

Thus, our oracle is desirable because the performance estimator
using our oracle is expected to preserve the difference of the true
performance metric and minimizes the upper bound of the finite
sample uncertainty; one can expect to select the best ITE predictor
among a set of candidates with high confidence.

4 EARLY EXPERIMENTAL RESULT
Here we report the early experimental results on a semi-synthetic
dataset comparing the model selection performance of our CF-CV
with previous baselines.
Datasets and Setup: We used IHDP2 dataset provided by [3]. This
is a semi-synthetic dataset containing 747 children with 25 features.
The detailed description of this dataset can be found in Section 5.1
of [6]. We follow the experimental procedure in [5]; each metric
evaluated and ranked pre-trained ITE predictors using only obser-
vational validation set, and the performance of each metric was
evaluated by the estimated performance of the candidate predictors.
We conducted the experimental procedure over 30 realizations with
35/35/30 train/validation/test splits.

1Formal description of the theoretical results and proofs will be provided in the full
version of the paper.
2the Infant Health Development Program.

Candidate Predictors: We constructed a set of candidate predic-
torsM by combining five machine learning algorithms3 and five
meta-learners implemented in EconML package4. Thus, |M| = 25.
Baselines: We compared CF-CV with the following baseline met-
rics. (1) IPW validation: This metric is proposed in Section 4.2 of [2]
and Section 2.3 of [5]. (2) Plug-in validation: It uses predicted values
by an arbitrary ITE prediction model as τ̃ (·) in Eq. (4). We used
Counterfactual Regression [6] for τ̃ (·) to ensure fair comparison. (3)
τ -risk: This metric is proposed in [5]. We used Gradient Boosting
Regressor to estimate observed outcomes (Yobs ).
Results: Table1 reports the averaged and the worst-case perfor-
mance over 30 realizations. Rank Correlation is the Spearman rank
correlation between the ranking by the true performance and the
estimated metric values. Relative Root Mean Squared Error (RMSE)5
is the true performance of the selected model in each metric rel-
ative to the best one in M. The results show the effective model
selection performance of our CF-CV. Moreover, ours significantly
outperformed with respect to the worst-case performance, and this
empirically suggests the stability of our metric.

Table 1: Experimental results on IHDP over 30 realizations.

Rank Correlation Relative RMSE
Avg (± SE) Worst Avg (± SE) Worst

IPW 0.224 (±0.073) −0.659 2.027 (±0.242) 7.779
τ -risk −0.399 (±0.051) −0.797 3.408 (±0.250) 8.884
Plug-in 0.887 (±0.021) 0.385 1.123 (±0.039) 1.841
CF-CV 0.929 (±0.008) 0.830 1.040 (±0.019) 1.515

5 CONCLUSION
This paper studies the evaluation problem of ITE prediction models.
We proposed the counterfactual cross-validation procedure, ensuring
accurate model selection with high confidence. The experimental
results on IHDP dataset show the effectiveness of our metric.
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