Supplementary Material The first term of (B.8):

A Difinitions (B.9)

We describe the formal notation of derivations of the E [YDR( )}}DR(O) ’X}
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THEOREM 3.3. The bias of Y;PE is
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Proof. The expectation of the first term of (A.6) is
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Similarly, we obtain
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We have (B.11) by (A.3), (B.12), and (B.13).
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THEOREM 3.4. The variance of Y;P® is
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Proof. The second moment of the first term of (A.6) is
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Therefore the variance is
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Finally, we have by (B.15) and (B.16), and Lemma B.1
that:
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C Proof of Theorem 3.1 and 3.2

THEOREM 3.1. The bias of the transformed outcome
with a biased propensity score is

Bias (Y/iTO |Xz) = ’E |:}A/,L<TO ‘ij| — T;

YO eXi) (o

(C.17) -

Proof. We have (C.17) by replacing Agl) and AEO) in
(B.11) with ugl) and ugo) respectively.
|

THEOREM 3.2. The wvariance of the transformed out-
come with a biased propensity score is

(C.18)
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Proof. We have (C.18) by replacing Agl) and AEO) in
(B.14) with ugl) and ugo) respectively.

D Proof of Theorem 3.5

THEOREM 3.5. Given a set of realized training dataset
{xi,w;, y¢*}, and suppose (; = 0, the bias and variance
of YPPR(v) are
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Proof. Suppose (; = 0, then,
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Therefore, by simply subtracting i’s true ITE from both
sides, we have:

B (75770 | 0)
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As for the variance, when i’s feature vector is given,

}A/;SDR(»)/) — ﬂl(,l) — ﬂgo) is a constant value. Therefore,

(D.20) holds. a

E Proof of Theorem 4.1 and 4.2

First, we prove Theorem 4.2 and use it to prove Theo-
rem4.1.

THEOREM 4.2. The bias of SDR-MSE with v =0 from
the true MSE is

(E.21)
‘E [(Y@SDR(O) - ﬁ»)Q] ~E {(Ti - %,»)2}

=E {(YfDR(O) . 2]
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Proof. We have:
e[ (7270) )

=E

Therefore, by subtracting E [(7; — 7;)?] from both sides,
we have (E.21).

O

THEOREM 4.1. The bias of TO-MSE from the true
MSE is

=E [(Y@To — @1

a1 (5 2]

Proof. We have (E.22) by replacing A,El) and AEO) in
(E.21) with ,ul(l) and u(.o)

,  respectively.
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F Details of the Experiments

F.1 Synthetic Data Here we present the details of for each scenario *.

parameter tuning in Section 5.1.

(1). Data Generation }—b{ (2). Train/Test Split }—‘

(3-a). IPM Training
(4). ITE Prediction }—‘

(5-a). Performance Eval (Meta-Learning Methods) ‘

(3-b). IPM Selection

(5-b). Performance Eval (Evaluation Metrics) ‘

Figure 8: Overall flow of the experiments. Red
box:meta-learning methods experiment. Blue box: eval-
uation metrics experiment.

F.1.1 Details of the Base Models: We used the
same 50 base models in Section 5.1.1 and 5.1.2.

Elastic Net: 20 base models were based on Elastic
Net. The regularization parameter a was between 0.01
and 1, and the ratio of the L1 regularization term Ay
was between 0.01 and 0.9.

GBR?: 30 base models were based on GBR. The
number of boosting stages nirees was between 50 and
400. The maximum depth of the individual regression
estimators Agepen, was 2 or 4. The rate that shrinks the
contribution of each tree n was 0.1 or 0.2.

F.1.2 Parameter Tuning Procedures for Out-
come Models: Here, we describe the model selection
and the hyper-parameter tuning procedures for the Po-
tential Outcome Models (POMs) used in our proposed
methods and the Observed Outcome Models (OOMs)
used in 7-riskg. Note that we only used the observed
outcome, feature vectors, and treatment assignments,
ie., (X;, W;, Y°%), because these are available in real-
world settings.

For the POM selection, we used p-risk [19].
We selected the model and the corresponding hyper-
parameters that minimized p-risk as POM for each sce-
nario. For the OOM selection, we selected the model
and the corresponding hyper-parameters that had the
minimum MSE for the observed outcomes. We relied
on 3-fold cross-validation for the model selections, and
used 3,000 samples from the first iteration of the exper-

8Gradient Boosting Regressor.

iments. Table F.1 lists the resulting POMs and OOMs
7

Table F.1: Selected models and hyper-parameters.

] POM \ OOM

1 Elastic Net Elastic Net
a=0.1, \y =0.9 a=0.1, \y =0.8

2 GBR Elastic Net
Nirees = 250, Ageptn = 2,71 =0.2 | a =0.1, A\; = 0.1

3 Elastic Net Elastic Net
a=0.01, \; =0.9 a=0.1, =09

4 GBR Elastic Net
Nirees = 325, Dgepth =2, 1 =02 | a=0.1, \; =0.1

5 Elastic Net Elastic Net
a=0.01, )\ =0.9 a=0.1,)\ =09

6 GBR Elastic Net
Nirees = D0, Dgepth =2, 1 =02 | a=0.1, Ay =0.1

7 GBR Elastic Net
Nirees = 90, Dgepetn =2,1=0.2 | a=0.1, \y =0.9

8 GBR Elastic Net
Ntrees = 90, Dgeptnh =2,1=0.2 | a=0.1, \y =0.2

F.1.3 Full Results Table F.2 and Table F.3 show
the complete results of the experiments in Section 5.1
including six values for ~.

G Right Heart Catheterization Data

Here we present the details of parameter tuning in
Section 5.2.

G.1 Details of the Base Models: We used 20
base models for each meta-learning method.

For TMA:

Logistic Regression: 10 base models were Logis-
tic Regression. The Regularization parameter a was
between 0.01 and 500.

RFC?8: 10 base models were RFC. The number of
trees was fixed (ngrees = 300), the maximum depth of
the tree Agepsn was between 1 and 5, the minimum
number of samples required to be at a leaf node
Nmin—leaf Was 1 or 3.

For TOM & SDRM:
Elastic Net: 10 base models were Elastic Net.
The regularization parameter o was between 0.01 and

Undescribed parameters of each algorithm are the default
values defined by scikit-learn (http://scikit-learn.org/stable/).

8Random Forest Classifier.
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Table F.2: Experimental results of meta-learning meth-
ods. Each value is the average RMSE over 50 iterations.

Scenario 1 2 3 4
TMA 1.004 | 0.941 1.167 | 1.358
TOM 7.644 | 4.268 | 19.754 | 4.742

SDRM(0.0) | 1.785 | 0.684 | 3.501 | 0.771
SDRM(0.1) | 0.643 | 0.604 | 0.748 | 0.771
SDRM(0.2) | 0.461 | 0.588 | 0.607 | 0.763
SDRM(0.3) | 0.401 | 0.583 | 0.540 | 0.756
SDRM(0.4) | 0.368 | 0.580 | 0.502 | 0.749
SDRM(0.5) | 0.342 | 0.576 | 0.473 | 0.743

Scenario 5 6 7 8
TMA 2.448 | 1.000 | 2.128 1.948
TOM 27.247 | 1.139 | 3.113 | 3.329

SDRM(0.0) | 3.439 1.104 | 2.326 | 2.016
SDRM(0.1) | 0.762 1.104 | 2.296 | 2.017
SDRM(0.2) | 0.658 1.094 | 2.221 1.982
SDRM(0.3) | 0.616 1.076 | 2.150 | 1.933
SDRM(0.4) | 0.597 | 1.045 | 2.062 1.886
SDRM(0.5) | 0.580 | 1.003 | 1.988 | 1.836

10, and the ratio of the L1 regularization term \; was
between 0.01 and 0.9.

RFR?: 10 base models were RFRs. The number of
trees was fixed (n¢prees = 300), the maximum depth of
the tree Ageptr, was between 1 and 5, the minimum num-
ber of samples required to be at a leaf node nyin—icar
was 1 or 3.

G.2 Details of the POM and OOM: We followed
the same procedures as in F.1.2. Table G.4 lists the
selected POM and OOM.

G.3 Full Results Table G.5 lists the complete result
of the experiment on the RHC dataset in Section 5.2.

9Random Forest Regressor.

Table F.3: Experimental results of evaluation metrics.
Each value is the average MSE of models selected by
each metric. Oracle is the best performing model’s

performance.

Scenario 1 2 3 4
Oracle 0.004 | 0.207 | 0.022 0.235
TO-MSE 0.265 0.546 1.001 | 22.446
p-risk 0.041 0.462 0.037 0.777
T-risk 0.028 | 0.272 | 0.078 7.075
SDR-MSE(0.0) | 0.031 | 0.295 | 0.335 | 0.613
SDR-MSE(0.1) | 0.028 | 0.298 0.034 | 0.610
SDR-MSE(0.2) | 0.029 0.294 | 0.033 | 0.614
SDR-MSE(0.3) | 0.030 | 0.294 | 0.033 | 0.619
SDR-MSE(0.4) | 0.031 0.294 0.034 0.622
SDR-MSE(0.5) | 0.031 0.294 | 0.035 0.624

Scenario 5 6 7 8
Oracle 0.032 0.710 2.937 1.432
TO-MSE 5.754 | 0.873 | 6.960 | 9.531
p-risk 0.037 | 0.882 | 3.477 | 3.054
T-risk 0.046 0.891 6.792 3.092
SDR-MSE(0.0) | 0.129 0.887 | 3.309 2.870
SDR-MSE(0.1) | 0.037 | 0.887 | 3.310 | 2.872
SDR-MSE(0.2) | 0.037 | 0.891 | 3.305 | 2.860
SDR-MSE(0.3) | 0.037 | 0.884 | 3.299 | 2.860
SDR-MSE(0.4) | 0.037 | 0.895 | 3.306 | 2.841
SDR-MSE(0.5) | 0.037 | 0.913 3.309 | 2.818

Table G.4: Selected models and hypter-parameters.
| | POM | OOM |
model RFC RFC
Adepth = 5, Nmin—teaf = 1 | Ddepth = 5, Nmin—teaf = 1

params

Table G.5: Average AUUCs with their standard errors.
Procedure AUUC

TMA & p-risk
TMA & TO-MSE
TMA & 7-riskp
TOM & TO-MSE
TOM & 7-riskp
SDRM & SDR-MSE

7.247 £+ 1.092
10.806 £ 0.997
10.957 + 1.028
3.849 £+ 1.389
3.114 +£ 1.381
17.269 + 1.023
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