Evaluating the Robustness of Off-Policy Evaluation

Yuta Saito”
Hanjuku-Kaso Co., Ltd.
Tokyo, Japan
saito@hanjuku-kaso.com

Kazuki Mogi®
Stanford University
California, United States
kmogi@stanford.edu

ABSTRACT

Off-policy Evaluation (OPE), or offline evaluation in general, eval-
uates the performance of hypothetical policies leveraging only
offline log data. It is particularly useful in applications where the
online interaction involves high stakes and expensive setting such
as precision medicine and recommender systems. Since many OPE
estimators have been proposed and some of them have hyperparam-
eters to be tuned, there is an emerging challenge for practitioners
to select and tune OPE estimators for their specific application. Un-
fortunately, identifying a reliable estimator from results reported in
research papers is often difficult because the current experimental
procedure evaluates and compares the estimators’ performance on
anarrow set of hyperparameters and evaluation policies. Therefore,
it is difficult to know which estimator is safe and reliable to use. In
this work, we develop Interpretable Evaluation for Offline Evalua-
tion (IEOE), an experimental procedure to evaluate OPE estimators’
robustness to changes in hyperparameters and/or evaluation poli-
cies in an interpretable manner. Then, using the IEOE procedure,
we perform extensive evaluation of a wide variety of existing es-
timators on Open Bandit Dataset, a large-scale public real-world
dataset for OPE. We demonstrate that our procedure can evaluate
the estimators’ robustness to the hyperparamter choice, helping
us avoid using unsafe estimators. Finally, we apply IEOE to real-
world e-commerce platform data and demonstrate how to use our
protocol in practice.

KEYWORDS

off-policy evaluation, recommender systems, counterfactual esti-
mation

ACM Reference Format:
Yuta Saito, Takuma Udagawa, Haruka Kiyohara, Kazuki Mogi, Yusuke Narita,
and Kei Tateno. 2021. Evaluating the Robustness of Off-Policy Evaluation. In

“Both authors contributed equally to this work.
This work was done during their internship at Hanjuku-Kaso Co., Ltd.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RecSys °21, September 27-October 1, 2021, Amsterdam, Netherlands

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8458-2/21/09...$15.00
https://doi.org/10.1145/3460231.3474245

Takuma Udagawa*
Sony Group Corporation
Tokyo, Japan
Takuma.Udagawa@sony.com

Yusuke Narita
Yale University
Connecticut, United States
yusuke.narita@yale.edu

Haruka Kiyohara®
Tokyo Institute of Technology
Tokyo, Japan
kiyohara.h.aa@m:.titech.ac.jp

Kei Tateno
Sony Group Corporation
Tokyo, Japan
Kei.Tateno@sony.com

Fifteenth ACM Conference on Recommender Systems (RecSys "21), September
27-October 1, 2021, Amsterdam, Netherlands. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3460231.3474245

1 INTRODUCTION

Interactive bandit and reinforcement learning algorithms have been
used to optimize decision making in many real-life scenarios such as
precision medicine, recommender systems, advertising, etc. We of-
ten use these algorithms to maximize the expected reward, but they
also produce log data valuable for evaluating and redesigning future
decision making. For example, the logs of a news recommender sys-
tem record which news article was presented and whether the user
read it, giving the decision maker a chance to make its recommen-
dation more relevant. Exploiting log data is, however, more difficult
than conventional supervised machine learning. This is because the
result is only observed for the action chosen by the algorithm but
not for all the other actions the system could have taken. The logs
are also biased, as the logs overrepresent the actions favored by the
algorithm used to collect the data. Online experiment or A/B test
is a potential solution to this issue. It compares the performance
of counterfactual algorithms in an online environment, enabling
unbiased evaluation and comparison. However, A/B testing coun-
terfactual algorithms is often difficult, since deploying a new policy
to a real environment is time-consuming and may damage user
satisfaction [7, 19].

This motivates us to study Off-policy Evaluation (OPE), which
aims to estimate the performance of an evaluation policy using only
log data collected by a behavior policy. Such an evaluation allows
us to compare the performance of candidate policies safely and
helps us decide which policy to deploy in the field. This alternative
offline evaluation approach thus has the potential to overcome the
above issues with the online A/B test approach.

With growing interest in OPE, the research community has pro-
duced a number of estimators, including Direct Method (DM) [2],
Inverse Probability Weighting (IPW) [17, 21], Self-Normalized IPW
(SNIPW) [25], Doubly Robust (DR) [4], Switch-DR [29], and Doubly
Robust with Optimistic Shrinkage (DRos) [22].

One emerging challenge with this trend is that there is a need
for practitioners to select and tune appropriate hyperparameters
for OPE estimators for their specific application [23, 28]. For ex-
ample, DM first estimates the expected reward function using an
arbitrary machine learning method, then uses its estimate for OPE.
Therefore, one has to identify a good machine learning method to

https://doi.org/10.1145/3460231.3474245
https://doi.org/10.1145/3460231.3474245

estimate the expected reward before the offline evaluation phase.
Identifying the appropriate machine learning method for DM is
difficult, because its accuracy cannot be easily quantified from ban-
dit data [8]. Sophisticated estimators such as Switch-DR [29] and
DRos [22] show improved offline evaluation performance in some
experiments. However, these estimators have a larger number of
hyperparameters to be tuned compared to the baseline estimators.
A difficulty here is that the estimation accuracy of OPE estimators
is highly sensitive to the choice of hyperparameters, as implied
in empirical studies [20, 28]. When we rely on OPE in real-world
applications, it is desirable to use an estimator that is robust to
the choice of hyperparameters and achieves accurate evaluations
without requiring significant hyperparameter tuning. Moreover,
we want the estimators to be robust to other possible configura-
tion changes such as evaluation policies. An estimator of this type
is preferable, because tuning hyperparameters of OPE estimators
with only logged bandit data is challenging in nature, and we of-
ten apply an estimator to several different policies to compare the
performance of candidate policies offline. The aim of this paper is
thus to enable a safer OPE practice by developing a procedure to
evaluate the estimators’ robustness.

Current dominant evaluation procedures. The current eval-
uation procedure used in OPE research is not suitable for evaluating
the estimators’ robustness. Almost all OPE papers evaluate the esti-
mator’s performance for a single given set of hyperparameters and
an arbitrary evaluation policy [4, 6, 13-15, 20, 22, 24, 27, 29]. Even
though it is common to iterate trials with different random seeds
to provide an estimate of the performance, this procedure cannot
evaluate the estimators’ robustness to hyperparameter choices or
the changes in evaluation policies, which is critical in real-world
scenarios. The estimator’s performance derived from this common
procedure does not properly account for the uncertainty in offline
evaluation performance, as the reported performance metric is a
single random variable drawn from the distribution over the esti-
mator’s performance. Consequently, choosing an appropriate OPE
estimator is difficult, as their robustness to hyperparameter choices
or the changes in evaluation policies are not quantified in existing
experiments.

Contributions. Motivated towards promoting a reliable use of
OPE in practice, we develop an interpretable and scalable evaluation
procedure for OPE estimators that quantifies their robustness to the
choice of hyperparameters and possible changes in evaluation poli-
cies. Our evaluation procedure compares several OPE estimators
as depicted in Figure 1. This figure compares the offline evaluation
performance of IPW and DM by illustrating their accuracy distri-
butions as we vary their hyperparameters, evaluation policies, and
random seeds. The x-axis is the squared error in offline evaluation;
a lower value indicates that an estimator is more accurate. The
figure is visually interpretable, and in this case, we are confident
that IPW is better, having lower squared errors with high prob-
ability, being robust to the changes in configurations, and being
more accurate even in the worst case. In addition to developing the
evaluation procedure, we have implemented open-source Python

Cumulative distribution of squared error

dm
1.0 ipw

, IPW performs better
3 in the worst case

the same performance
in the best case

0.0 i
0.0000 0.0002 0.0004 0.0006 0.0008 0.0 01

accurate Squared error inaccurate

Figure 1: An example output of the proposed evaluation pro-
cedure for offline evaluation

software, pyIEOE!, so that researchers can easily implement our
procedure in their experiments, and practitioners can identify the
best estimator for their specific environment.

Using our procedure and software, we evaluate a wide variety
of existing OPE estimators on Open Bandit Dataset [20] (Section 5)
and several classification datasets (Appendix A)?. Through these
extensive experiments, we demonstrate that IEOE can provide in-
formative results, in particular the estimators’ robustness to the
hyperparameter settings and evaluation policy changes, which
could not be obtained using typical experimental procedure in OPE
research.

Finally, as a proof of concept, we use our procedure to select
the best estimator for the offline evaluation of coupon treatment
policies on a real-world e-commerce platform. The platform uses
OPE to improve its coupon optimization policy safely without im-
plementing A/B tests. However, the platform’s data scientists do
not know which OPE estimator is appropriate for their setting. We
apply our procedure to provide an appropriate estimator choice
for the platform. This real-world application demonstrates how to
use our procedure to reduce uncertainty and risk that we face in
real-world offline evaluation.

Our contributions are summarized as follows.

e We develop an experimental procedure called IEOE that is
useful for identifying robust estimators and avoid the use of
estimators sensitive to configuration changes.

e We have implemented pyIEOE, open-source Python soft-
ware, that facilitates the use of our experimental procedure
both in research and in practice.

e We conduct comprehensive benchmark experiments on pub-
lic datasets and demonstrate that IEOE is useful for identify-
ing estimators sensitive to configuration changes, and thus
can help avoid potential failures in OPE.

e We apply IEOE to a real-world OPE application and demon-
strate how this procedure helps us safely conduct OPE in
practice.

!https://github.com/sony/pylEOE
2The complete version of this paper is
https://usaito.github.io/files/RecSys2021_IEOE.pdf

available at

https://usaito.github.io/files/RecSys2021_IEOE.pdf

2 OFF-POLICY EVALUATION
2.1 Setup

We consider a general contextual bandit setting. Let r € [0, rmax]
denote a reward or outcome variable (e.g., whether a coupon as-
signment results in an increase in revenue) and a € A be a discrete
action. We let x € X be a context vector (e.g., the user’s demo-
graphic profile) that the decision maker observes when picking
an action. Rewards and contexts are sampled from unknown prob-
ability distributions p(r | x,a) and p(x), respectively. We call a
function 7 : X — A(A) a policy. It maps each context x € X into a
distribution over actions, where 7 (a | x) is the probability of taking
action a given context vector x.

Let D := {(x;, a;,ri)}}-, be a historical logged bandit feedback
with n observations. g; is a discrete variable indicating which action
in A is chosen for individual i. r; and x; denote the reward and the
context observed for individual i. We assume that a logged bandit
feedback dataset is generated by a behavior policy m;, as follows:

{GanrdYiy ~ [| pGms(ai | xp(ri | xi ai),
i=1

where each context-action-reward triplet is sampled independently
from the identical product distribution. Then, for a function f(x, a, r),
we use B, [f] :=n"! 2 (xpapr) e f (i, ai, i) to denote its empir-
ical expectation over n observations in D. We also use q(x, a) :=
Er~p(rix.a) [| X, a] to denote the mean reward function for a given
context and action.

In OPE, we are interested in using historical logged bandit data
to estimate the following policy value of a given evaluation policy
7e which might be different from 7,:

V(re) = E(x,a,r)~p(x)n'e(a\x)p(r\x,a) [r].
Estimating V' (7,) before deploying 7, in an online environment is
useful in practice, because 7, may perform poorly. Additionally, this
makes it possible to select an evaluation policy that maximizes the
policy value by comparing their estimated performances without
incurring additional implementation cost.

2.2 Existing OPE Estimators

Given the policy value as the estimand, the goal of researchers is to
propose an accurate estimator. OPE estimator V estimates the policy
value of an arbitrary evaluation policy as V(,) = V(re; D, 0),
where O is an available logged bandit feedback dataset, and 0 is a
set of pre-defined hyperparameters of V.

Below, we summarize the definitions and properties of several
existing OPE estimators. We also summarize their built-in hyperpa-
rameters in Table 1.

Direct Method (DM). DM [2] first trains a supervised machine
learning method, such as ridge regression, to estimate the mean
reward function q. DM then estimates the policy value as

Vom (7re; D, §) = En[Eger, (alx) [4(xi, @)1,

where §(x, a) is the estimated mean reward function. If §(x, a) is a
good approximation to the mean reward function, this estimator
accurately estimates the policy value of the evaluation policy. If
§(x, a) fails to approximate the mean reward function well, however,
the final estimator tends to fail in OPE.

Inverse Probability Weighting (IPW). To alleviate the issue with
DM, researchers often use IPW [17, 21]. IPW re-weights the rewards
by the ratio of the evaluation policy to the behavior policy, as

Vipw (773 D) = Enlp(xi, ai)ril,

where p(x,a) = me(a | x)/np(a | x) is called the importance
weight. When the behavior policy is known, IPW is unbiased and
consistent for the policy value. However, it can have high variance,
especially when the evaluation policy deviates significantly from
the behavior policy. To reduce the variance of IPW, the following
weight clipping is often applied.

Viewps (e; D) := Ep[min{p(x;, a;), A}ri],

where A > 0 is a clipping hyperparamter. A lower value of A greatly
reduces the variance while introducing a large bias. Following Su
et al. [22], we call IPW with weight clipping as IPW with Pessimistic
Shrinkage (IPWps). When A = oo, IPWps is identical to IPW.

Doubly Robust (DR). DR [4] combines DM and IPW as follows.

Vor (7e3 D, §) = Bn[Eqr, (alx) [4(xi,)] + p (i, ai) (ri — §(xi, a1))].

DR uses the estimated mean reward function as a control variate
to decrease the variance of IPW. It is also doubly robust in that it
is consistent to the policy value if either the importance weight or
the mean reward estimator is accurate. The weight clipping can
also be applied to DR as follows.

VDRps(ﬂeZ D, q)
= En[Bgur, (alx) [4(xi,)] + min{p(x;, a;), A} (ri — §(xi, ai))],
where A > 0 is a clipping hyperparamter. DR with weight clipping

is called DR with Pessimistic Shrinkage (DRps). When A = oo, DRps
is identical to DR.

Self-Normalized Estimators. SNIPW [25] is an approach to ad-
dress the variance issue of IPW. It estimates the policy value by
dividing the sum of weighted rewards by the sum of importance
weights as:

En[p(xi, ai)ri]
Enlp(xi,ai)]

SNIPW is more stable than IPW, because the policy value estimated
by SNIPW is bounded in the support of rewards, and its conditional
variance given action and context is bounded by the conditional
variance of the rewards [12]. IPW does not have these properties.
We can define Self-Normalized Doubly Robust (SNDR) in a similar
manner as follows.

Vanipw (7e; D) =

VsNDR (7e; D, §)
p(xi, a;)
En[p(xi, ai)]

Switch Estimator. DR can still be subject to the variance issue,
particularly when the importance weights are large due to low over-
lap between behavior and evaluation policies. Switch-DR [29] aims
to further reduce the variance by using DM where the importance
weight is large:

=En |Eger, (alx) [d(xi, @)] + (ri = q(xi,a1)) | -

VswitchpR (7e: D. 4. 7) = En[Bger, (alx) [4(xi. a)]

+p(xi, ai) {p(xi, ai) < 7}(ri = §(xi, ai))],

Table 1: Hyperparameters of the OPE estimators

OPE Estimators ‘ Hyperparameters
Direct Method (DM) 4, K
Inverse Probability Weighting with Pessimistic Shrinkage (IPWps) [21, 22] A, ()
Self-Normalized Inverse Probability Weighting (SNIPW) [25] (7p)
Doubly Robust with Pessimistic Shrinkage (DRps) [4, 22] q, K, A, (7p)
Self-Normalized Doubly Robust (SNDR) 4, K, (7ip)
Switch Doubly Robust (Switch-DR) [29] 4, K, 7, (7tp)
Doubly Robust with Optimistic Shrinkage (DRos) [22] q, K, A, (7p)

Note: G is an estimator for the mean reward function constructed by an arbitrary machine learning method. K is the number of folds in the
cross-fitting procedure. 7, is an estimated behavior policy. This is unnecessary when we know the true behavior policy, and thus it is in
parentheses. 7 and A are non-negative hyperparameters for defining the corresponding estimators.

where I{-} is the indicator function and 7 > 0 is a hyperparameter.
Switch-DR interpolates between DM and DR. When 7 = 0, it is
identical to DM, while 7 — oo yields DR.

Doubly Robust with Optimistic Shrinkage (DRos). Su et al. [22]
proposes DRos based on a new weight function g : X X A — Ry
that directly minimizes sharp bounds on the mean-squared-error
(MSE) of the resulting estimator. DRos is defined as

VDRos (7e; D, é, A
= BEn[Egr, (alx) [§(xi, @)] + p(xi, ais 1) (ri — §(xi, ai))],

where A > 0 is a hyperparameter and p is defined as p(x, a; 1) =
pz(x’}mp(x, a). When A = 0, p(x, a; 1) = 0 leading to DM. On the
other hand, as A — oo, p(x, a; A) = p(x, a) leading to DR.

Cross-Fitting Procedure. To obtain a reward estimator, §, we some-
times use cross-fitting to avoid the substantial bias that might arise
due to overfitting [16]. The cross-fitting procedure constructs a
model-dependent estimator such as DM and DR as follows:

(1) Take a K-fold random partition (.Z)k)f:1 of size n of logged
bandit feedback dataset D such that the size of each fold
is ng = n/K. Also, for each k = 1,2,... K, we define D]i =
D\Dg.

(2) Foreach k =1,2,...K, construct reward estimators {gx }sz1
using the subset of data D;’.

(3) Given {gi }I]le and model-dependent estimator V, estimate

the policy value by K1 2115:1 V(7e; Dy)

Hyperparameter Tuning Procedure. As Table 1 summarizes, most
OPE estimators have hyperparameters such as 4, 7, K, and ¢ that
should appropriately be set. Su et al. [22] proposes to select a set of
hyperparameters based on the following criterion.

0e argmin BiasUB(6; D)2 +V,(6,D), (1)
0eO

where V,,(0; D) is the sample variance in OPE, and BiasUB(0; D)
is the upper bound of the bias estimated using D. There are several
ways to derive the bias upper bound as stated in Su et al. [22]. One

way is the direct bias estimation:

BiasUB(0; D) := |En[(p (xi> ai;0) = p (xi, 1)) (ri = § (xi ai))]|

. \/ 2B [p(r,0)?] 108(2/9) _ 2pmas log(2/9)

n 3n

where § € (0, 1] is the confidence delta to derive the high probability
upper bound, and pmax = maxy g p(x, a) is the maximum impor-
tance weight. p(x;, a;; 0) is the importance weight modified by a
hyperparameter. For example, for IPWps and DRps, p(xj, ai; A) =

min{p(x;, a;), A}, and for Switch-DR, p(x;, a;; 1) = p(xi, ai)l{p(xi, a;) <

T}
3 EVALUATING OFFLINE EVALUATION

So far, we have seen that the OPE community has developed a
variety of OPE estimators. What every OPE research paper should
do in their experiments is to compare the performance (estimation
accuracy) of the existing estimators and report the results. A typical
and dominant method to do so is to estimate the following mean-
squared-error (MSE) as the estimator’s performance metric:

MSE(V: 70, 0) = E) [(V(/te) —V(7e: D, 9))2] ,

where V(7,) is the policy value and V is an estimator to be evalu-
ated. MSE measures the squared distance between the policy value
and its estimated value; a lower value means a more accurate OPE
by V. Researchers often calculate the MSE of each estimator several
times with different random seeds and report its mean.

The issue with this procedure is that most of the estimators
have some hyperparameters that should be chosen properly be-
fore the estimation process. Moreover, the estimation performance
can vary when evaluating different evaluation policies (especially
in finite sample cases). However, the current dominant procedure
for evaluating OPE estimators uses only one set of hyperparam-
eters and an arbitrary evaluation policy for each estimator, and
then discusses the derived results [1, 6, 24, 27, 29].3 This type of
simplified experimental procedure does not accurately capture the
uncertainty in the performance of OPE estimators. Specifically, it

3This is why we use MSE(V'; 7., 0) to denote MSE so as to highlight that it depends
on the estimator’s hyperparameters 6 and an evaluation policy 7e.

cannot evaluate the robustness to hyperparameter choices and eval-
uation policy settings, as the reported score is for a single arbitrary
set of hyperparameters and for a single evaluation policy.

What is often critical in offline evaluation practices is to identify
an estimator that performs well for a variety of evaluation poli-
cies without problem-specific hyperparameter tuning. An estimator
robust to the changes in such configurations is usable reliably in
uncertain real-life scenarios. In contrast, an estimator which per-
forms well only on a narrow set of hyperparameters and evaluation
policies entails a higher risk of failure in its particular application.
Therefore, we want to avoid using such sensitive estimators as
these estimators are more likely to fail. In the next section, we de-
scribe an experimental procedure that can evaluate the estimators’
robustness to experimental configurations, leading to informative
estimator comparisons in OPE research and a reliable estimator
selection in practice.

4 INTERPRETABLE EVALUATION FOR
OFFLINE EVALUATION

Here, we outline our experimental protocol, Interpretable Evaluation
for Offline Evaluation (IEOE). As we have discussed, the expected
value of performance (e.g., MSE) alone is insufficient to properly
evaluate the real-world applicability of an estimator, as it discards
information about its robustness to hyperparameter choices and
changes in evaluation policies. We can conduct a more informative
experiment by estimating the cumulative distribution function (CDF)
of an estimator’s performance, as done in some studies on reinforce-
ment learning [5, 9, 10]. CDF is the function, Fz : R — [0, 1], where
Z is a random variable representing the performance metric of an
estimator (e.g., the squared error). Fz(z) maps a performance met-
ric z to the probability that the estimator achieves a performance
better or equal to that score, i.e., Fz(z) :=P(Z < z).

When we have size m of realizations of Z,i.e., Z = {z1,...,Zm},
we can estimate the CDF by

m

Fr(a) = o 3 Mz < 2), @)

i=1

Using the CDF for evaluating OPE estimators allows researchers
to compare different estimators with respect to their robustness
to the varying configurations. Specifically, we can use the CDF
to evaluate OPE estimators by examining the CDF of the estima-
tors’ performance visually or computing some summary scores
of the CDF as the estimators’ performance metric. For example,
we can score an estimator by the area under the CDF curve (AU-
CDF): AU-CDF(zmax) = foz’“a" Fz(z)dz. Another possible sum-
mary score is conditional value-at-risk (CVaR) which computes the
expected value of a random variable above a given probability a:
CVaRy(2) =E[Z | Z > Fgl(a)], where Fgl (&) := argmin{z |

z
Fz(z) > a} is the inverse of the CDF. When using CVaR, the es-
timators are evaluated based on the average performance of the

bottom 100 X (1 — «) percent of trials. For example, CVaRy 7(Z)
is the average performance of the worst 30% of trials. In addition,

“In the following, without loss of generality, we assume that a lower value of Z means
more accurate OPE.

we can use standard deviation (Std), E[(Z — E[Z])?] 1/2 and some
other moments such as the skewness of F(z) as summary scores.

IEOE with Synthetic or Classification Data. In research pa-
pers, it is common to use synthetic or classification data to evaluate
OPE estimators [4, 11, 12, 22, 29]. We first present how to apply the
IEQE procedure to synthetic or classification data in Algorithm 1.
To evaluate the estimation performance of V, we need to specify
a candidate set of hyperparameters ©, a set of evaluation policies
II, a hyperparameter sampling function ¢, and a set of random
seeds S. Then, for every seed s € S, the algorithm samples a set
of hyperparameters § € © based on sampler ¢. What kind of ¢
we use can change depending on the purpose of the evaluation of
OPE. For example, we can use a hyperparameter tuning method
for OPE estimators such as the method described in Section 2.2 as
¢, assuming practitioners use it in real-world applications. When
we cannot implement such a hyperparameter tuning method for
OPE due to its implementation cost or risk of overfitting, we can
be conservative and use the uniform distribution as ¢ in the eval-
uation of OPE. Next, the IEOE algorithm samples an evaluation
policy 7, € I, from the discrete uniform distribution. Then, it
replicates the data generating process using the bootstrap sampling
from D. A bootstrapped logged bandit feedback dataset is defined
as D* == {(x},a},r])}[.; where each tuple (x,a;,r}) is sampled
independently from O with replacement. Finally, for sampled tuple
(e, D*, 0), it computes a performance metric (e.g., the squared
error). After applying Algorithm 1 to several estimators and obtain-
ing the empirical CDF of their evaluation performances, we can
visualize them or compute some summary scores to evaluate and
compare the estimators’ robustness.

IEOE with Real-World Data. 1t is also possible to apply IEOE
to real-world logged bandit data. Algorithm 2 presents IEOE that
can be used in real-world applications. To evaluate the performance
of V with real-world data, we need to prepare several logged bandit
feedback datasets {D; }5.:1 where each dataset D; is collected by
a policy ;. Then, for every seed s € S, the algorithm samples
a set of hyperparameters 0 € © based on a sampler ¢. Next, the
algorithm samples an evaluation policy 7; € II. from the discrete
uniform distribution. Then, the evaluation and test sets are defined
as Die = Dj and Dey = Uizl;k# Dj where the evaluation set is
used in OPE and the test set is used to calculate the ground-truth
performance of 7;. Then, the algorithm replicates the environment
using the bootstrap sampling from Dey. A bootstrapped logged
bandit feedback dataset is defined as D¢, := {(x], aj, r})}[_; where
each tuple (x},a},r}) is sampled independently from Dey with
replacement. Finally, for a sampled tuple (7., D*, 0), it computes
the squared error as follows.

A 2
2= (Von(mjs Dre) = V(7550 D3))
where Von (7j; Dte) = Epn[r;] is the on-policy estimate of the policy
value of 7; estimated with the test set.

Following Algorithm 2, researchers can benchmark the robust-
ness of OPE estimators using public real-world data. In addition,
practitioners can avoid using unstable estimators by applying Al-
gorithm 2 to their own bandit data.

Algorithm 1 Interpretable Evaluation for Offline Evaluation (with Classification Data)

Input: logged bandit feedback D, an estimator to be evaluated V, a candidate set of hyperparameters ©, a set
of evaluation policies I, a hyperparameter sampler ¢, a set of random seeds S

Output: empirical CDF of the squared error (Fy)
1 2«0
2. fors € S do
3: 0 — $(©;s)

7e < Unif (IT¢; s)

D* « Bootstrap(D;s)

7/ — SE(V; D*, e, §)

7: Z—2ZU {Z’}

8. end for

9: Estimate F using Z (by Eq. 2)

A

> initialize set of results

> sample a set of hyperparameters

> sample an evaluation policy uniformly

> sample logged bandit data with replacement
> calculate the squared error of V

Algorithm 2 Interpretable Evaluation for Offline Evaluation (with Real-World Data)

Input: logged bandit feedback datasets {D; }§=1,

of evaluation policies ITe = {x; }3’,:1,
Output: empirical CDF of the squared error (Fz)
1: Z <« 0 (initialize set of results)
2: fors € S do
3: 0 — $(O;s)
7j « Unif (IL¢;)
Dre = Dj and Dev = Uj_y 4,5 Dj
6: D, < Bootstrap(Dey; s)
7: Von(”j; Dre) = Enri]
8: 7' — (Von(ﬂjQ Dre) — V(ﬂj; 0, z):v))z
9: Z<—2Zu {Z/}
10: end for
11: Estimate F using Z (by Eq. 2)

4:
5:

an estimator to be evaluated V, a candidate set of hyperparameters ©, a set

a hyperparameter sampler ¢, a set of random seeds S

> sample a set of hyperparameters based on a given sampler

> sample an evaluation policy uniformly
> define evaluation and test sets

> sample data from the evaluation set with replacement

> calculate an on-policy estimate of the policy value with the test set

> calculate the squared error of the estimator

5 EXPERIMENTS WITH OPEN BANDIT
DATASET

In this section, we use IEOE and evaluate the robustness of a wide
variety of OPE estimators on Open Bandit Dataset (OBD)®. We run
the experiments using our pyIEOE software. By using it, anyone
can replicate the results easily.®

5.1 Setup

OBD is a set of logged bandit feedback datasets collected on a large-
scale fashion e-commerce platform provided by Saito et al. [20].
There are three campaigns, "ALL", "Men", and "Women". We use size
30,000 and 300,000 of randomly sub-sampled data from the "ALL"
campaign. The dataset contains user context as feature vector x € X,
fashion item recommendation as action a € A, and click indicator
as reward r € {0, 1}. The dimensions of the feature vector x is 20,
and the number of actions is 80.

The dataset consists of subsets of data collected by two different
policies, the uniform random policy and the Bernoulli Thompson

Shttps://research.zozo.com/data. html

The code to replicate the results is available at:
https://github.com/sony/pyIEOE/benchmark . We also provide detailed description of
the software in Appendix B.

Sampling policy [26]. We let D 4 denote the dataset collected by uni-
form random policy 74 and Dp denote that collected by Bernoulli
Thompson Sampling policy 7. We apply Algorithm 2 to obtain a
set of SEs as the performance metric of the estimators.

5.2 Estimators and Hyperparameters

We use our protocol and evaluate DM, IPWps, SNIPW, DRps, SNDR,
Switch-DR, and DRos in an interpretable manner.

In the experiment, we use the true behavior policy contained in
the dataset to derive importance weights. In this setting, SNIPW
is hyperparameter-free, while the other estimators need to be
tested for robustness to the choice of the pre-defined hyperpa-
rameters and changes in evaluation policies. In addition, we use
the hyperparameter tuning method described in Section 2.2 to tune
estimator-specific hyperparameters such as A and 7. Then, we use
RandomizedSearchCV implemented in scikit-learn with n_iter = 5
to tune hyperparameters of reward estimator §. Tables 2 and 3 de-
scribe hyperparameter spaces © for each estimator. Finally, we set
S=1{0,1,...,499}.

Table 2: Hyperparameter spaces for OPE estimators

OPE Estimators ‘

Hyperparameter Spaces

DM G € {LR/RRRF,LightGBM},K € {1,2,...,5}
IPWps A€ {1,510,50,...,10%c0}, (#, € {LR,RF,LightGBM})
SNIPW (% € {LR,RF,LightGBM})
DRps G € {LR/RR,RF,LightGBM}, K € {1,2,...,5}, 1 € {1,5,10,50,...,10%c}, (#, € {LR,RF,LightGBM})
SNDR G € {LR/RR,RF,LightGBM}, K € {1,2,...,5}, (% € {LR,RF,LightGBM})
Switch-DR G € {LR/RR,RF,LightGBM}, K € {1,2,...,5}, 7 € {1,5,10,50,...,10%c0}, (7 € {LR,RF,LightGBM})

DRos § € {LR/RRRF,LightGBM}, K € {1,2,...,5}, A € {1,5,10,50, ...,105c0}, (# € {LRRF,LightGBM})

Note: LR/RR means that LogisticRegression (LR) is used when Y is binary and RidgeRigression (RR) is used otherwise. RF stands for RandomForest.
Ap is an estimated behavior policy. This is unnecessary when we know the true behavior policy. We estimate the behavior policy only in the
experiments with classification data in Appendix A. Therefore, 7 is in parentheses. K = 1 means that we do not use cross-fitting and train ¢ on

the whole Dey.

Table 3: Hyperparameter spaces for reward estimator ¢ (and behavior policy estimator ;)

Machine Learning Models ‘

Hyperparameter Spaces

LogisticRegression (binary outcome)
RidgeRegression (continuous outcome)
RandomForest
LightGBM

C e [1073,10%]
a € [1072,10%)

max_depth € {2,3,...,10}, min_samples_split € {5,6,...,20}
learning_rate € [107%,1071], max_depth € {2,3,.. ., 10}, min_samples_leaf € {5,6,...,20}

Note: We follow the scikit-learn package as to the names of the hyperparameters As default, we use max_iter = 10, 000 for LogisticRegression,

n_estimators = 100 for RandomForest, and max_iter = 100 for Light GBM.

Cumulative distribution of squared error

1.0-

o
@

Cumulative probability
o

IPWps
SNIPW
0.4- DM
DRps
0.2 SNpR
Switch-DR
—— DRos
0.0 ! | ! !)
0.0 0.2 0.4 0.6 0.8 1.0
le-5
Squared error Small

(n = 30,000)

Cumulative distribution of squared error

1.0-

o
™

Cumulative probability
o
[s2]

IPWps
SNIPW
0.4- DM
DRps
0.2 SNpR
Switch-DR
—— DRos
0.0 . ! \ .]
0.0 0.2 0.4 0.6 0.8 1.0
Squared error le—6

Large
(n =300, 000)

Figure 2: Comparison of the CDF of OPE estimators’ squared error in Open Bandit Dataset

5.3 Results

Figure 2 visually compares the CDF of the estimators’ squared error.
Table 4 reports AU-CDF, CVaRy 7, and Std as summary scores.
When the dataset size is small (n = 30,000), we see that the
typical way of reporting only the mean of the squared error cannot
tell which estimator is accurate or robust. However, some other
summary scores show that DM has more robust and stable estima-
tion performance than other estimators, having lower CVaRq 7 and
Std. Moreover, Figure 2 provides more detailed information about
the estimators’ performance. Specifically, DM performs better in
the worst case while the other estimators show better performance

in the region where squared error is lower than 0.2. Thus, when
we are conservative and prioritize the worst case performance, DM
is the most appropriate choice. Otherwise, other estimators might
be a better choice. We cannot obtain this conclusion by comparing
only the mean (typical metric) of the squared error.

When the dataset size is large (n = 300, 000), we confirm that
IPWps and SNIPW are more accurate than other model-based esti-
mators. In particular, Figure 2 shows that IPWps performs better
than other estimators in all region, meaning that we should use it
whether we prioritize the best or the worst case performance.

Overall, the results indicate that an appropriate estimator can
drastically change depending on the situation such as the data size.

Table 4: Summary scores of the OPE estimators on Open Bandit Dataset with different sample size

\ n = 30,000

n = 300,000

OPE Estimators ‘ Mean (typical metric) ‘ AU-CDF CVaRy;

Std Mean (typical metric) ‘ AU-CDF CVaR;; Std

DM 1.00* 1.000* 1.00*
IPWps 1.02° 0.994° 1.19°
SNIPW 1.02° 0.994° 1.20

DRps 1.04" 0.989 1.277
SNDR 1.02° 0.995 1.277
Switch-DR 1.02° 0.994° 1.277
DRos 1.02° 0.994° 1.27%

1.00* 10.77F 0.186" 7.457 6.947
1.31° 1.00* 1.000* 1.00* 1.00*
133 1.58° 0.917° 1.57° 1.71°
1.44 2.48 0.887 2.67 5.02
1.44 3.27 0.827 3.50 6.01
1.45% 3.28 0.825 3.50 6.00
1.45% 3.28 0.825 3.50 6.00

Note: Larger value is better for AU-CDF and lower value is better for Mean, CVaR, and Std. Note that we normalize the scores by dividing them
by the best score among all estimators. We use zpax = 1.0 X 107> for n = 30, 000 and zyax = 1.0 X 107¢ for n = 300, 000 to calculate AU-CDF. The
red” and green® fonts represent the best and second-best estimators, respectively. The blue” fonts represent the worst estimator.

Therefore, we argue that identifying a reasonable estimator before
conducting OPE is essential in practice. Moreover, we demonstrate
that the IEOE procedure can provide more informative insight as
to the estimators’ performance compared to the typical metric.

6 REAL-WORLD APPLICATION

In this section, we apply the IEOE procedure to a real-world appli-
cation.

6.1 Setup

To show how to use IEOE in a real-world application, we conducted
a data collection experiment on a real e-commerce platform in
September 2020. The platform wants to use OPE to improve the
performance of its coupon optimization policy safely without con-
ducting A/B tests. However, it does not know which estimator is
appropriate for its specific application and environment. Therefore,
we apply the IEOE procedure with the aim of providing a suitable
estimator choice for the platform.

During the data collection experiment, we constructed D4, Dp,
and D¢ by randomly assigning three different policies (4, 7,
and 7¢) to users on the platform. In this application, x is a user’s
context vector, a is a coupon assignment variable (where there
are four different types of coupons, i.e., |A| = 4), and r is either
a user’s content consumption indicator (binary outcome) or the
revenue from each user observed within the 7-day period after the
coupon assignment (continuous outcome). The total number of
users considered in the experiment was 39,687, and each of Dy,
Dpg, and D¢ has approximately one third of the users.

Note that, in this application, there is a risk of overfitting due to
the intensive hyperparameter tuning of OPE estimators, as the size
of the logged bandit feedback data is not large. Moreover, the data
scientists want to use an OPE estimator to evaluate the performance
of several candidate policies. Therefore, we aim to find an estimator
that performs stably for a wide range of evaluation policies with
fewer hyperparameters.

6.2 Performance Metric

To apply our evaluation procedure, we need to define a performance
metric (in step 8 of Algorithm 2). We can do this by using our real-
world data. We first pick one of the three policies as evaluation
policy 7. and regard the others as behavior policies. When we
choose 71y as the evaluation policy, we define Dey = D U D
and Die = D 4. Then, by applying Algorithm 2, we obtain a set of
SEs to evaluate the robustness and real-world applicability of the
estimators.

6.3 Estimators and Hyperparameters

We use the IEOE protocol to evaluate the robustness of DM, IPWps,
SNIPW, DRps, SNDR, Switch-DR, and DRos. Then, we utilize the
experimental results to help the data scientists of the platform
choose an appropriate estimator.

During the data collection experiment, we logged the true ac-
tion choice probabilities of the three policies, and thus SNIPW is
hyperparameter-free. We use the hyperparameter spaces defined
in Tables 2 and 3 for our real-world application. In addition, we
use the hyperparameter tuning method described in Section 2.2 to
tune estimator-specific hyperparameters such as A and 7. Then, we
use the uniform distribution as ¢ to sample hyperparameters of
reward regression model §. Finally, we set S = {0,1,...,999} and
e = {74, 7B, 7}

6.4 Results

We applied Algorithm 2 to the above estimators for the binary and
continuous outcome data, respectively.

Figure 3 compares the CDF of the estimators’ squared error for
each outcome. First, it is obvious that SNIPW is the best estimator
for the binary outcome case, achieving the best accuracy in almost
all regions. We can also argue that SNIPW is preferable for the
continuous outcome case, because it reveals the most accurate
estimation in the worst case and is hyperparameter-free, although
it underperforms DM in some cases. On the other hand, IPWps
performs poorly for both outcomes, because our dataset is not large
and some behavior policies are near deterministic, making IPWps
an unstable estimator. Moreover, Switch-DR fails to accurately

Cumulative distribution of squared error

1.0-

o
@

IPWps

SNIPW

DM

DRps

SNDR

Switch-DR
—— DRos

Cumulative probability
=] =]
J‘> o

o
N

0.0+ .
0.00000 0.00010

0.00004 0.00006 0.00008

Squared error

0.00002

binary

Cumulative distribution of squared error

1.0-
>
=
S 0.8
©
Qo
IS
o 0.6-
[0 IPWps
>
=1 SNIPW
© 0.4-
S DM
IS DRps
S
302 SNDR

Switch-DR
—— DRos
0.0~ y . . , . d
0 20 40 60 80 100 120

Squared error .
continuous

Figure 3: Comparison of the CDF of OPE estimators’ squared error in the real-world application

Table 5: Summary scores of the OPE estimators in the real-world application

‘ Binary Outcome

Continuous Outcome

OPE Estimators ‘ Mean (typical metric) ‘ AU-CDF CVaR(; Std Mean (typical metric) ‘ AU-CDF CVaR(; Std
DM 8.70 0.946 1092 35.94F 1.29 1.000* 1.47 2.19
IPWps 29.45¢ 0.6487 31967 29.84° 19.00" 0.572° 19.84" 14.67"
SNIPW 1.00" 1.000* 1.00* 1.00* 1.00" 0.974° 1.00* 1.00"
DRps 8.16 0.953° 1027 34.54 1.44 0.957 1.60 2.11
SNDR 7.45° 0.942 9.35° 32.19 1.21 0.935 1.22°¢ 1.17°
Switch-DR 8.16 0.953° 1027 34.54 1.48 0.919 1.57 1.68
DRos 8.16 0.953° 1027 34.54 1.43 0.968 1.60 2.21

Note: Binary Outcome is the results when the outcome is each user’s content consumption indicator. Continuous Outcome is the results when
the outcome is the revenue from each user observed within the 7-day period after the coupon assignment. Larger value is better for AU-CDF and
lower value is better for Mean, CVaR, and Std. Note that we normalize the scores by dividing them by the best score among all estimators. We
use Zmax = 1.0 X 107 for the binary outcome and zpa = 1.0 X 10? for the continuous outcome to calculate AU-CDF. The red” and green® fonts
represent the best and second-best estimators, respectively. The blue' fonts represent the worst estimator.

evaluate the performance of the evaluation policies. Thus, it is
unsafe to use these estimators in our application, even though we
tune their hyperparameters (1 or 7).

We additionally confirm the above observations in a quantitative
manner. For both binary and continuous outcomes, we compute
AU-CDF, CVaR 7, and Std of the squared error for each OPE esti-
mator. We report these summary scores in Table 5, and the results
demonstrate that SNIPW clearly outperforms other estimators in
almost all situations. In particular, SNIPW is the best with respect to
CVaRy.7 and Std for both binary and continuous outcomes, showing
that this estimator is the most stable estimator in our environment.
Moreover, SNIPW is hyperparameter-free, and overfitting is less
likely to occur compared to other estimators having some hyperpa-
rameters to be tuned. Through this evaluation of OPE estimators,
we concluded that the e-commerce platform should use SNIPW
for its offline evaluation. After comprehensive accuracy and sta-
bility verification, the platform is now using SNIPW to improve its
coupon optimization policy safely.

7 CONCLUSION AND FUTURE WORK

In this paper, we argued that the current dominant evaluation pro-
cedure for OPE cannot evaluate the robustness of the estimators’
performance. Instead, the IEOE procedure can provide an inter-
pretable way to evaluate how robust each estimator is to the choice
of hyperparameters or changes in evaluation policies. We have also
developed open-source software to streamline our interpretable
evaluation procedure. It enables rapid benchmarking and valida-
tion of OPE estimators so that practitioners can spend more time
on real decision making problems, and OPE researchers can fo-
cus more on tackling advanced technical questions. We perform
an extensive evaluation of a wide variety of OPE estimators and
demonstrated that our experiments are more informative than a
typical procedure, showing which estimators are more sensitive
to configuration changes. Finally, we applied our procedure to a
real-world application and demonstrated its practical usage.
Although our procedure is useful to evaluate the robustness of
estimators, we need to prepare at least two logged bandit feedback
datasets collected by different policies to apply it to real-world ap-
plications, as described in Algorithm 2. Thus, it would be beneficial

to construct a procedure to enable the evaluation of OPE estimators
with only logged bandit data collected by a single policy.

ACKNOWLEDGMENTS

The authors would like to thank Masahiro Nomura, Ryo Kuroiwa,
and Richard Liu for their help in reviewing the paper. Addition-
ally, we would like to thank the anonymous reviewers for their
constructive reviews and discussions.

REFERENCES

(1]

=

[10

[11]

[12]

[13

[14]

[15

[16]
[17]

(18]

[19

[20]

[21]

[22]

Aman Agarwal, Soumya Basu, Tobias Schnabel, and Thorsten Joachims. 2017.
Effective evaluation using logged bandit feedback from multiple loggers. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 687-696.

Alina Beygelzimer and John Langford. 2009. The offset tree for learning with
partial labels. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 129-138.

Dheeru Dua and Casey Graff. 2017. UCI machine learning repository. (2017).
Miroslav Dudik, Dumitru Erhan, John Langford, and Lihong Li. 2014. Doubly
robust policy evaluation and optimization. Statist. Sci. 29, 4 (2014), 485-511.
Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus
Janoos, Larry Rudolph, and Aleksander Madry. 2020. Implementation Matters
in Deep RL: A Case Study on PPO and TRPO. In International Conference on
Learning Representations.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. 2018. More
robust doubly robust off-policy evaluation. In International Conference on Machine
Learning, Vol. 80. PMLR, 1447-1456.

Alexandre Gilotte, Clément Calauzénes, Thomas Nedelec, Alexandre Abraham,
and Simon Dollé. 2018. Offline a/b testing for recommender systems. In Proceed-
ings of the Eleventh ACM International Conference on Web Search and Data Mining.
198-206.

Nan Jiang and Lihong Li. 2016. Doubly robust off-policy value evaluation for
reinforcement learning. In International Conference on Machine Learning, Vol. 48.
PMLR, 652-661.

Scott Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, and Philip Thomas.
2020. Evaluating the performance of reinforcement learning algorithms. In
Proceedings of the 37th International Conference on Machine Learning. PMLR,
4962-4973.

Scott M Jordan, Daniel Cohen, and Philip S Thomas. 2018. Using cumulative
distribution based performance analysis to benchmark models. In NeurIPS 2018
Workshop on Critiquing and Correcting Trends in Machine Learning.

Nathan Kallus, Yuta Saito, and Masatoshi Uehara. 2021. Optimal Off-Policy
Evaluation from Multiple Logging Policies. In Proceedings of the 38th International
Conference on Machine Learning, Vol. 139. PMLR, 5247-5256.

Nathan Kallus and Masatoshi Uehara. 2019. Intrinsically Efficient, Stable, and
Bounded Off-Policy Evaluation for Reinforcement Learning. In Advances in Neural
Information Processing Systems, Vol. 32. 3325-3334.

Masahiro Kato, Shota Yasui, and Masatoshi Uehara. 2020. Off-Policy Evaluation
and Learning for External Validity under a Covariate Shift. In Advances in Neural
Information Processing Systems, Vol. 33. 49-61.

Angi Liu, Hao Liu, Anima Anandkumar, and Yisong Yue. 2019. Triply Robust
Off-Policy Evaluation. arXiv preprint arXiv:1911.05811 (2019).

Yusuke Narita, Shota Yasui, and Kohei Yata. 2019. Efficient counterfactual learn-
ing from bandit feedback. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 4634-4641.

Yusuke Narita, Shota Yasui, and Kohei Yata. 2020. Off-policy Bandit and Rein-
forcement Learning. arXiv preprint arXiv:2002.08536 (2020).

Doina Precup. 2000. Eligibility traces for off-policy policy evaluation. Computer
Science Department Faculty Publication Series (2000), 80.

Aniruddh Raghu, Omer Gottesman, Yao Liu, Matthieu Komorowski, Aldo Faisal,
Finale Doshi-Velez, and Emma Brunskill. 2018. Behaviour policy estimation in
off-policy policy evaluation: Calibration matters. arXiv preprint arXiv:1807.01066
(2018).

Yuta Saito. 2020. Doubly robust estimator for ranking metrics with post-click
conversions. In Fourteenth ACM Conference on Recommender Systems. 92—100.
Yuta Saito, Shunsuke Aihara, Megumi Matsutani, and Yusuke Narita. 2020. Open
Bandit Dataset and Pipeline: Towards Realistic and Reproducible Off-Policy
Evaluation. arXiv preprint arXiv:2008.07146 (2020).

Alex Strehl, John Langford, Lihong Li, and Sham M Kakade. 2010. Learning from
Logged Implicit Exploration Data, In Advances in Neural Information Processing
Systems. Advances in Neural Information Processing Systems 23, 2217-2225.

Yi Su, Maria Dimakopoulou, Akshay Krishnamurthy, and Miroslav Dudik. 2020.
Doubly robust off-policy evaluation with shrinkage. In International Conference
on Machine Learning, Vol. 119. PMLR, 9167-9176.

[23

[24

[25

[26

[28

[29

]

]

Yi Su, Pavithra Srinath, and Akshay Krishnamurthy. 2020. Adaptive Estima-
tor Selection for Off-Policy Evaluation. In Proceedings of the 37th International
Conference on Machine Learning, Vol. 119. PMLR, 9196-9205.

Yi Su, Lequn Wang, Michele Santacatterina, and Thorsten Joachims. 2019. Cab:
Continuous adaptive blending for policy evaluation and learning. In International
Conference on Machine Learning, Vol. 97. PMLR, 6005-6014.

Adith Swaminathan and Thorsten Joachims. 2015. The self-normalized estimator
for counterfactual learning. In Advances in Neural Information Processing Systems,
Vol. 28. 3231-3239.

William R Thompson. 1933. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika 25, 3/4 (1933),
285-294.

Nikos Vlassis, Aurelien Bibaut, Maria Dimakopoulou, and Tony Jebara. 2019.
On the design of estimators for bandit off-policy evaluation. In International
Conference on Machine Learning, Vol. 97. PMLR, 6468-6476.

Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. 2019. Empirical
study of off-policy policy evaluation for reinforcement learning. arXiv preprint
arXiv:1911.06854 (2019).

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudik. 2017. Optimal and adaptive
off-policy evaluation in contextual bandits. In International Conference on Machine
Learning, Vol. 70. PMLR, 3589-3597.

Table 6: Classification datasets used in the benchmark experiment

Datasets #Samples #Actions #Dimensions
OptDigits 5,620 10 64
PenDigits 10,992 10 16
SatImage 6,435 6 36

Note: #Samples is the size of the dataset. #Actions is the total number of actions (or classes). #Dimensions is the number of dimensions of the
context (or feature) vector.

Table 7: Behavior and evaluation policies used in the benchmark experiment

Behavior and Evaluation Policies | Base Machine Learning Classifier (74,;) Alpha ()

behavior policy LogisticRegression 0.9
evaluation policy 1 LogisticRegression 0.8
evaluation policy 2 LogisticRegression 0.2
evaluation policy 3 RandomForest 0.8
evaluation policy 4 RandomForest 0.2
evaluation policy 5 None (uniform random) 0.0

Note: For LogisticRegression, we use C = 100, max_iter = 10000. For RandomForest, we use n_estimators = 100,
min_samples_split = 5, max_depth = 10. We also set random_state = 12345 for both classifiers. The names of the hyperparameters correspond to
the ones specified by the scikit-learn package.

A BENCHMARK EXPERIMENTS ON CLASSIFICATION DATASETS

Here, we conduct experiments on three classification datasets, OptDigits, PenDigits, and Satlmage provided at the UCI repository [3]. Table 6
shows some statistics of the datasets used in the benchmark experiment.

A.1 Setup

Following previous studies [4, 6, 11, 29], we transform classification data to contextual bandit feedback data. In a classification dataset
{(xi, i)}, we have feature vector x; € X and ground-truth label a; € A. Here, we regard a machine learning classifier 74, : X — A(A)
as a deterministic policy that chooses class label a; € A as an action from feature vector x;. We then define reward variable r; := I{z(x;) = a;}.
Since the original classifier is deterministic, we make it stochastic by combining 74,; and the uniform random policy 7, as:

m(al|x)=a- -Wnge(x) = a} + (1 -a) - mu(a),

where « € [0, 1] is an additional experimental setting.

To apply IEOE to classification data, we first randomly split each dataset into train Dy, and test Die := {(x;, ai)}?;l sets. Then, we train a
classifier on Dy, and use it to construct a behavior policy 7, and a class of evaluation policies II.. By running behavior policy 7, on Dye,
we transform Dy to logged bandit feedback data Dey := {(x;, af.’, ri =]I{af.’ = ai})};’:’l, where a%’ ~ 1y, is the action sampled by the behavior
policy. Then, by applying the following procedure, we compute the squared error (SE) of V for each iteration in Algorithm 1:

(1) Estimate the policy value V(re; D*,) for tuple (7e, D*, 0) sampled in the algorithm.

(2) Estimate V() using the fully observed rewards in Die, i.e., V(7e; Dte) = Ew [Egewrr, (a|x;) [[{a® = ai}]].

(3) Compare the off-policy estimate V (7¢; D*, 6) with its ground-truth V (7e; Die) using SE as a performance metric of V, i.e., SE(V; D*, ., 0) =

(V(”eZ D*,0) = V(re; Dte))2~

A.2 Estimators and Hyperparameters

We use IEOE to evaluate the robustness of DM, IPWps, SNIPW, DRps, SNDR, Switch-DR, and DRos.

Here, we run the experiments under two different settings. First, we test the case where the true behavior policy 7, is available. Next, we
investigate the OPE estimators with estimated behavior policy 7, where we assume that the true behavior policy is unknown. In this case,
we additionally test the OPE estimators for robustness to the choice of machine learning method to obtain 7.

Tables 2 and 3 (in the main text) describe hyperparameter spaces © for each estimator. We use RandomizedSearchCV implemented
in scikit-learn with n_iter = 5 to tune hyperparameters of reward estimator ¢ and behavior policy estimator 7;,. We additionally use
CalibratedClassifierCV implemented in scikit-learn with cv = 2 when estimating the behavior policy, as calibrating the behavior policy
estimator matters in OPE [18]. Then, we use the hyperparameter tuning method described in Section 2.2 to tune estimator-specific

Datasets

Optdigits Pendigits Satimage
Cumulative distribution of squared error Cumulative distribution of squared error Cumulative distribution of squared error
1.0 1.0 1.0
2 2 Fry
=08 =08 = 0.8
Qo Qo Qo
© © ©
Qo Qo Qo
o o o
506 506 506
zZoom o IPWps o IPWps S
2 SNIPW = SNIPW © =
L o4 B 4 o4 - L o4
£ DRps £ DRps £
UOZ SNDR UO2 SNDR UDZ
Switch-DR Switch-DR Switch-DR
—— DRos —— DRos —— DRos
%9000 0.0002 0.0004 0.0006 0.0008 0.0010 %9000 0.0002 0.0004 0.0006 0.0008 0.0010 %000 0001 0002 0003 0004 0005
Squared error Squared error Squared error
Cumulative distribution of squared error Cumulative distribution of squared error Cumulative distribution of squared error
1.0 1.0 1.0
2 Py (z
=08 =08 =08
Qo Qo Q
© © ©
Qo Qo Qo
o o o
5 0.6 506 506
full g IPWps v IPWps g IPWps
2 04 SNIPW 2 04 SNIPW 2 04 SNIPW
s DM s DM = DM
g DRps g DRps g DRps
O, SNDR 045 SNDR [SIN SNDR
Switch-DR Switch-DR Switch-DR
—— DRos —— DRos —— DRos
%0 01 02 03 04 o5 06 %0 01 02 03 04 o5 06 %0 0.1 0.2 03
Squared error Squared error Squared error
- . - s . -
Figure 4: Comparison of the CDF of OPE estimators’ squared error (true behavior policy)
Cumulative distribution of squared error Cumulative distribution of squared error Cumulative distribution of squared error
1.0 1.0 1.0
ol) z
=o0s8 =o0s8 =08
Qo Qo Qo
© © ©
Qo Qo Q
o [} o
506 506 506
Zoom 4 IPWps 4 IPWps o
b SNIPW b SNIPW]
© © ©
E 0.4 DM E 0.4 DM E 0.4
S DRps 5 DRps 5
(S SNDR 045 SNDR (SN
Switch-DR Switch-DR Switch-DR
~—— DRos ~—— DRos ~—— DRos
08 " i 08) i i 0.0 4
.00 0.02 0.04 0.06 0.08 0.10 .00 0.02 0.04 0.06 0.08 0.10 0.0 0.1 0.2 0.3 0.4 0.5
Squared error Squared error Squared error
Cumulative distribution of squared error Cumulative distribution of squared error Cumulative distribution of squared error
1.0 1.0 1.0
z z 2o
=08 =08 =08
o o Qo
© © ©
Q Q Q
o [=} [=}
506 506 506
full 4 IPWps 4 IPWps o IPWps
B os SNIPW Boa SNIPW Bos SNIPW
E DM E DM E BLT
5 DRps E DRps 5 DRps
045 SNDR 04, SNDR 0,5 SNDR
Switch-DR Switch-DR Switch-DR
~—— DRos ~—— DRos ~—— DRos
0'00 10 20 30 40 0'00 200 400 600 0'% 0 0.2 0.4 0.6 0.8 1.0 12
Squared error Squared error Squared error le8

Figure 5: Comparison of the CDF of OPE estimators’ squared error (estimated behavior policy)

hyperparameters such as A and 7. Table 7 describes how we construct the true behavior policy and five different evaluation policies in IT,.

Finally, we set S = {0, 1,...,499}.

Table 8: Summary scores of the OPE estimators (true behavior policy)

‘ OptDigits PenDigits SatImage

OPE Estimators \ AU-CDF CVaR,; std AU-CDF CVaR,; std AU-CDF CVaR,; Std
DM 0.000" 2215377 1631.15" 0.000" 2609.927 1674.67" 0.266" 323.817 184.397
IPWps 1.000* 1.00" 1.00* 1.000* 1.00* 1.00* 1.000* 1.00* 1.00*
SNIPW 0.907° 2.51° 3.15° 0.843° 3.16° 2.18° 0.966° 1.56° 1.16°

DRps 0.249 127.61 139.99 0.358 45.49 33.59 0.686 7.99 4.78

SNDR 0.374 96.91 125.92 0.480 27.47 26.15 0.833 4.71 3.17

Switch-DR 0.287 126.21 139.12 0.347 45.46 33.52 0.686 7.99 4.78

DRos 0.287 126.21 139.12 0.347 45.46 33.52 0.686 7.99 4.78

Note: Larger value is better for AU-CDF and lower value is better for CVaR and Std. Note that we normalize the summary scores by dividing
them by the best score among all estimators. We use zmax = 1.0 X 1072 for OptDigits and Pendigits and zp., = 5.0 X 1072 for SatImage to calculate
AU-CDF. The red” and green® fonts represent the best and second-best estimators, respectively. The blue’ fonts represent the worst estimator.

Table 9: Summary scores of the OPE estimators (estimated behavior policy)

‘ OptDigits PenDigits Satlmage

OPE Estimators ‘ AU-CDF CVaR,; Std AU-CDF CVaR; Std AU-CDF CVaR,; Std

DM 0.390 14.18 9.89 0.454 7.84 5.86 0.911° 1.62° 1.20°

IPWps 1.000* 1.00* 1.00* 1.000* 1.00* 1.00* 1.000* 1.00* 1.00*

SNIPW 0.460 9.06° 7.05 0.538 7.22 5.23 0.778 3.23 2.52
DRps 0.262" 71187 141.25% 03327 1527.07" 2498.85" 06577 527x107" 1.25% 108

SNDR 0.525°¢ 7.57 6.07° 0.700° 4.28° 3.79¢ 0.904 2.40 2.52
Switch-DR 0.262" 71187 141.257 0.332" 1527.07%7 2498.85" 06577 5.27x107" 1.25x 108"
DRos 0.262" 71187 141.257 03327 1527.077 2498.85" 06577 5.27x107" 1.25x 108

Note: Larger value is better for AU-CDF and lower value is better for CVaR and Std. Note that we normalize the scores by dividing them by the
best score among all estimators. We use zmax = 0.1 for OptDigits and Pendigits and zpax = 0.5 for SatImage to calculate AU-CDF. The red” and
green® fonts represent the best and second-best estimators, respectively. The blue’ fonts represent the worst estimator.

A.3 Results

Figures 4 and 5 visually compare the CDF of the estimators’ squared error for each dataset in true and estimated behavior policy settings. We
also confirm the observations in a quantitative manner by computing AU-CDF, CVaRy 7, and Std of the squared error of each OPE estimator.
We report these summary scores in Tables 8 and 9.

First, in the setting where the true behavior policy is available, it is obvious that IPWps is the best estimator and achieves the most accurate
estimation in almost all regions (see Figure 4). SNIPW also performs comparably better than other estimators. In contrast, model-dependent
estimators, especially DM, perform poorly compared to the typical estimators such as IPWps and SNIPW. We observe here that these
model-dependent estimators perform worse, when the reward estimator ¢ has a serious bias issue. On the other hand, we do not have to care
about the specification of ¢ when we use IPWps or SNIPW. Therefore, our experimental procedure poses a possibility that simple estimators
with fewer hyperparameters tend to perform well and be robust for a wide variety of settings when the true behavior policy is recorded.

In the setting where the behavior policy needs to be estimated, we observe similar trends. First, Figure 5 and Table 9 show that IPWps
achieves the most accurate estimation even when it uses the estimated behavior policy. Second, estimators based on DR such as DRps,
Switch-DR, and DRos show considerably large squared errors when the behavior policy is estimated. This is because DR is vulnerable to
the overfitting of 7. DR produces large squared errors when 7;, overfits the data and outputs extreme estimations (we observe that the
minimum estimated action choice probability is 1077). With these extreme estimated action choice probabilities, the importance weights
used in these estimators also become large, amplifying the estimation error of reward estimator §. This leads to serious overestimation of the
policy value of 7., even though the cut-off hyperparameters (A and 7) are properly tuned.

We suggest that future OPE research use the IEOE procedure to test the stability and robustness of OPE estimators as we have demonstrated.
This additional experimental effort will produce substantial information about the estimators’ usability in practice.

B SOFTWARE IMPLEMENTATION

In addition to developing the evaluation procedure, we have implemented open-source Python software, pyIEOE, to streamline the evaluation
of OPE with our experimental protocol. This package is built with the intention of being used with OpenBanditPipeline (obp).”

Below, we show the essential codes to conduct an interpretable evaluation of various OPE estimators with our software so that one can
grasp the usage of the software easily. Primarily, only four lines of code are sufficient to complete our IEOE procedure in Algorithms 1 and 2
except for some preparations.

import InterpretableOPEEvaluator
>>> from pyieoe.evaluator import InterpretableOPEEvaluator

initialize InterpretableOPEEvaluator class
>>> evaluator = InterpretableOPEEvaluator(
random_states=np.arange(1000),
bandit_feedbacks=[bandit_feedback],
evaluation_policies=[
(ground_truth_a, action_dist_a),
(ground_truth_b, action_dist_b),
1,
ope_estimators=[
DoublyRobustWithShrinkage(), # DRos
SelfNormalizedDoublyRobust(), # SNDR

i)

1,

regression_models=[
LogisticRegression,
RandomForest,

1,

regression_model_hyperparams={
LogisticRegression: lr_hp,
RandomForest: rf_hp,

.

3

ope_estimator_hyperparams={
DoublyRobustWithShrinkage.estimator_name: dros_param,
SelfNormalizedDoublyRobust.estimator_name: sndr_param,

.

estimate policy values
>>> policy_value = evaluator.estimate_policy_value()

visualize CDF of squared errors of each OPE estimator
>>> evaluator.visualize_cdf_aggregate() # plot CDF curves

Code Snippet 1: Essential Codes for Interpretable OPE Evaluation

In the following subsections, we explain the procedure including preparations in detail, by showing an example of conducting an
interpetable evaluation of OPE estimators on a synthetic bandit dataset.

B.1 Preparing Dataset and Evaluation Policies

Before using pyIEOE, we first need to prepare logged bandit feedback data and a set of evaluation policies. Here, each evaluation policy
consists of its action distribution and ground-truth policy value. We can conduct this preparation by using the dataset module of obp.

In addition to synthetic dataset, users can utilize multi-class classification data, public real-world data (such as Open Bandit Dataset [20]),
and their own real-world data to evaluate the robustness of OPE estimators by following preprocessing procedure of obp. Users are also free
to define a set of evaluation policies by themselves.

"https://github.com/st-tech/zr-obp

import necessary package from obp
>>> from obp.dataset import (
SyntheticBanditDataset,
logistic_reward_function,
linear_behavior_policy
)
initialize SyntheticBanditDataset class
>>> dataset = SyntheticBanditDataset(
n_actions=10,
dim_context=5,
reward_type="binary", # "binary" or "continuous"
reward_function=logistic_reward_function,
behavior_policy_function=linear_behavior_policy,
random_state=12345,
)
obtain synthetic logged bandit feedback data
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback(n_rounds=10000)
prepare action distribution and ground truth policy value for each evaluation policy
>>> action_dist_a = #...
>>> ground_truth_a = #...
>>> action_dist_b = #...
>>> ground_truth_b = #. ..

Code Snippet 2: Preparing Dataset and Evaluation Policies

B.2 Defining Hyperparameter Spaces

After preparing the synthetic data and a set of evaluation policies, we now define hyperparameter spaces of OPE estimators. Users of the
software can define hyperparameter spaces of OPE estimators by themselves as follows.

define hyperparameter spaces for ope estimators
>>> lambda_ = {
"lower": le-3,
"upper": le2,
"log": True,
"type": float
3
>>> K = {
"lower": 1,
"upper": 5,
"log": False,
"type": int
}
>>> dros_param = {"lambda_": lambda_, "K": K}
>>> sndr_param = {"K": K}
define hyperparameter spaces for regression models

>>> C = {
"lower": le-3,
"upper": 1e2,
"log": True,
"type": float
3
>>> n_estimators = {
"lower": 20,
"upper": 200,
"log": True,
"type": int
3

>>> 1r_hp = {"C": C}
>>> rf_hp = {"n_estimators": n_estimators}

Code Snippet 3: Defining Hyperparameter Spaces

B.3 Interpretable OPE Evaluation

Finally, we evaluate OPE estimators in an interpretable manner. Our software provides an easy procedure to conduct this evaluation of OPE
workflow.

Users can intuitively evaluate the robustness of the estimators by comparing the CDF of the squared error. The quantitative comparison is
also possible by calculating some summary scores such as AU-CDF and CVaR. In this case, it is easy to figure out that SNDR is more reliable
than DRos.

import InterpretableOPEEvaluator

>>> from pyieoe.evaluator import InterpretableOPEEvaluator

import other necessary packages

>>> from sklearn.linear_model import LogisticRegression

>>> from sklearn.ensemble import RandomForestClassifier as RandomForest

>>> from obp.ope import DoublyRobustWithShrinkage, SelfNormalizedDoublyRobust

initialize InterpretableOPEEvaluator class
define OPE estimators to evaluate
>>> evaluator = InterpretableOPEEvaluator(
random_states=np.arange(1000),
bandit_feedbacks=[bandit_feedback],
evaluation_policies=[
(ground_truth_a, action_dist_a),
(ground_truth_b, action_dist_b)
1,
ope_estimators=[
DoublyRobustWithShrinkage(),
SelfNormalizedDoublyRobust(),

1,

regression_models=[
LogisticRegression,
RandomForest,

1,

regression_model_hyperparams={
LogisticRegression: lr_hp,
RandomForest: rf_hp,

i

ope_estimator_hyperparams={
DoublyRobustWithShrinkage.estimator_name: dros_param,
SelfNormalizedDoublyRobust.estimator_name: sndr_param

)
estimate policy values
>>> policy_value = evaluator.estimate_policy_value()
compute squared errors
se = evaluator.calculate_squared_error()
compare OPE estimators in an interpretable manner by visualizing CDF of squared errors
>>> evaluator.visualize_cdf_aggregate() # plot CDF curves

quantitative analysis by AU-CDF and CVaR

>>> au_cdf = evaluator.calculate_au_cdf_score(threshold=0.004)
>>> print(au_cdf)

{"dr-os": 0.000183.., "sndr": 0.000257..%}

>>> cvar = evaluator.calculate_cvar_score(alpha=70)

>>> print(cvar)

{"dr-os": ©.000456.., "sndr": 0.000194..}

Code Snippet 4: Interpretable OPE Evaluation

	Abstract
	1 Introduction
	2 Off-Policy Evaluation
	2.1 Setup
	2.2 Existing OPE Estimators

	3 Evaluating Offline Evaluation
	4 Interpretable Evaluation for Offline Evaluation
	5 Experiments with Open Bandit Dataset
	5.1 Setup
	5.2 Estimators and Hyperparameters
	5.3 Results

	6 Real-World Application
	6.1 Setup
	6.2 Performance Metric
	6.3 Estimators and Hyperparameters
	6.4 Results

	7 Conclusion and Future Work
	Acknowledgments
	References
	A Benchmark Experiments on Classification Datasets
	A.1 Setup
	A.2 Estimators and Hyperparameters
	A.3 Results

	B Software Implementation
	B.1 Preparing Dataset and Evaluation Policies
	B.2 Defining Hyperparameter Spaces
	B.3 Interpretable OPE Evaluation

