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Abstract

Off-policy evaluation (OPE) in contextual bandits
has seen rapid adoption in real-world systems,
since it enables offline evaluation of new policies
using only historic log data. Unfortunately, when
the number of actions is large, existing OPE es-
timators – most of which are based on inverse
propensity score weighting – degrade severely
and can suffer from extreme bias and variance.
This foils the use of OPE in many applications
from recommender systems to language models.
To overcome this issue, we propose a new OPE
estimator that leverages marginalized importance
weights when action embeddings provide struc-
ture in the action space. We characterize the bias,
variance, and mean squared error of the proposed
estimator and analyze the conditions under which
the action embedding provides statistical benefits
over conventional estimators. In addition to the
theoretical analysis, we find that the empirical
performance improvement can be substantial, en-
abling reliable OPE even when existing estimators
collapse due to a large number of actions.

1. Introduction
Many intelligent systems (e.g., recommender systems, voice
assistants, search engines) interact with the environment
through a contextual bandit process where a policy observes
a context, takes an action, and obtains a reward. Logs of
these interactions provide valuable data for off-policy evalu-
ation (OPE), which aims to accurately evaluate the perfor-
mance of new policies without ever deploying them in the
field. OPE is of great practical relevance, as it helps avoid
costly online A/B tests and can also act as subroutines for
batch policy learning (Dudı́k et al., 2014; Su et al., 2020a).
However, OPE is challenging, since the logs contain only
partial-information feedback – specifically the reward of the
chosen action, but not the counterfactual rewards of all the
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other actions a different policy might choose.

When the action space is small, recent advances in the design
of OPE estimators have led to a number of reliable meth-
ods with good theoretical guarantees (Dudı́k et al., 2014;
Swaminathan & Joachims, 2015a; Thomas & Brunskill,
2016; Jiang & Li, 2016; Wang et al., 2017; Liu et al., 2018;
Xie et al., 2019; Su et al., 2019; 2020a; Kallus & Uehara,
2020). Unfortunately, these estimators can degrade severely
when the number of available actions is large. Large ac-
tion spaces are prevalent in many potential applications of
OPE, such as recommender systems where policies have to
handle thousands or millions of items (e.g., movies, songs,
products). In such a situation, existing estimators based on
inverse propensity score (IPS) weighting (Horvitz & Thomp-
son, 1952) can incur high bias and variance, and as a result,
be impractical for OPE. First, a large action space makes it
challenging for the logging policy to have common support
with the target policies, and IPS is biased under support
deficiency (Sachdeva et al., 2020). Second, a large num-
ber of actions typically leads to high variance of IPS due
to large importance weights. To illustrate, we find in our
experiments that the variance and mean squared error of IPS
inflate by a factor of over 150 when the number of actions
increases from 10 to 2000 given a fixed sample size. While
doubly robust (DR) estimators can somewhat reduce the
variance by introducing a reward estimator as a control vari-
ate (Dudı́k et al., 2014), they do not address the fundamental
issues that come with large action spaces.

To overcome the limitations of the existing estimators when
the action space is large, we leverage additional informa-
tion about the actions in the form of action embeddings.
There are many cases where we have access to such prior
information. For example, movies are characterized by aux-
iliary information such as genres (e.g., adventure, science
fiction, documentary), director, or actors. We should then
be able to utilize these supplemental data to infer the value
of actions under-explored by the logging policy, potentially
achieving much more accurate policy evaluation than the
existing estimators. We first provide the conditions under
which action embeddings provide another path for unbiased
OPE, even with support deficient actions. We then pro-
pose the marginalized IPS (MIPS) estimator, which uses the
marginal distribution of action embeddings, rather than ac-
tual actions, to define a new type of importance weights. We
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show that MIPS is unbiased under an alternative condition,
which states that the action embeddings should mediate ev-
ery causal effect of the action on the reward. Moreover, we
show that MIPS has a lower variance than IPS, especially
when the vanilla importance weights have a high variance
and a compact subset of the embedding dimensions is suf-
ficient to capture the causal effect of the actions. We also
characterize the gain in MSE provided by MIPS, which im-
plies an interesting bias-variance trade-off with respect to
the quality of the action embeddings. Including many em-
bedding dimensions captures the causal effect better, leading
to a smaller bias of MIPS. In contrast, using only a subset
of the embedding dimensions reduces the variance more.
We thus propose a strategy to intentionally violate the as-
sumption about the action embeddings by discarding less
relevant embedding dimensions for achieving a better MSE
at the cost of introducing some bias. Comprehensive experi-
ments on synthetic and real-world data verify the theoretical
findings, indicating that MIPS can provide an effective bias-
variance trade-off in the presence of many actions.

2. Off-Policy Evaluation
We follow the general contextual bandit setup, and an ex-
tensive discussion of related work is given in Appendix A.
Let x ∈ X ⊆ Rdx be a dx-dimensional context vector
drawn i.i.d. from an unknown distribution p(x). Given
context x, a possibly stochastic policy π(a|x) chooses ac-
tion a from a finite action space denoted as A. The reward
r ∈ [0, rmax] is then sampled from an unknown conditional
distribution p(r|x, a). We measure the effectiveness of a
policy π through its value

V (π) := Ep(x)π(a|x)p(r|x,a)[r] = Ep(x)π(a|x)[q(x, a)],

where q(x, a) := E[r|x, a] denotes the expected reward
given context x and action a.

In OPE, we are given logged bandit data collected by a
logging policy π0. Specifically, let D := {(xi, ai, ri)}ni=1

be a sample of logged bandit data containing n independent
observations drawn from the logging policy as (x, a, r) ∼
p(x)π0(a|x)p(r|x, a). We aim to develop an estimator V̂
for the value of a target policy π (which is different from
π0) using only the logged data in D. The accuracy of V̂ is
quantified by its mean squared error (MSE)

MSE(V̂ (π)) : = ED
[(
V (π)− V̂ (π;D)

)2]
= Bias(V̂ (π))2 + VD

[
V̂ (π;D)

]
,

where

Bias(V̂ (π)) := ED[V̂ (π;D)]− V (π),

VD
[
V̂ (π;D)

]
:= ED

[(
V̂ (π;D)− ED[V̂ (π;D)]

)2]
.

Note that ED[·] takes the expectation over the logged data.

In the following theoretical analysis, we focus on the IPS
estimator, since most advanced OPE estimators are based
on IPS weighting (Dudı́k et al., 2014; Wang et al., 2017; Su
et al., 2019; 2020a; Metelli et al., 2021). IPS estimates the
value of π by re-weighting the observed rewards as follows.

V̂IPS(π;D) :=
1

n

n∑
i=1

π(ai|xi)
π0(ai|xi)

ri =
1

n

n∑
i=1

w(xi, ai)ri

where w(x, a) := π(a|x)/π0(a|x) is called the (vanilla)
importance weight.

This estimator is unbiased (i.e., ED[V̂IPS(π;D)] = V (π))
under the following common support assumption.

Assumption 2.1. (Common Support) The logging policy
π0 is said to have common support for policy π if π(a|x) >
0→ π0(a|x) > 0 for all a ∈ A and x ∈ X .

The unbiasedness of IPS is desirable, making this simple
re-weighting technique so popular. However, IPS can still
be highly biased, particularly when the action space is large.
Sachdeva et al. (2020) indicate that IPS has the following
bias when Assumption 2.1 is not true.

∣∣∣Bias(V̂IPS(π))
∣∣∣ = Ep(x)

 ∑
a∈U(x,π0)

π(a|x)q(x, a)

 ,
where U(x, π0) := {a ∈ A|π0(a|x) = 0} is the set of un-
supported actions for context x under π0. Note that U(x, π0)
can be large especially when A is large. This bias is due
to the fact that the logged dataset D does not contain any
information about the unsupported actions.

Another issue of IPS is that its variance can be large, which
is given as follows (Dudı́k et al., 2014).

nVD
[
V̂IPS(π;D)

]
= Ep(x)π0(a|x)[w(x, a)2σ2(x, a)]

+ Vp(x)
[
Eπ0(a|x)[w(x, a)q(x, a)]

]
+ Ep(x)

[
Vπ0(a|x)[w(x, a)q(x, a)]

]
,
(1)

where σ2(x, a) := V[r|x, a]. The variance consists of three
terms. The first term reflects the randomness in the rewards.
The second term is the variance due to the randomness over
the contexts. The final term is the penalty arising from
the use of IPS weighting. In particular, the first and third
terms can be large when the weights w(x, a) have a wide
range, which occurs when π assigns large probabilities to
actions that have low probability under π0. The latter can be
expected when the action space A is large and the logging
policy π0 aims to have universal support (i.e., π0(a|x) > 0
for all a and x). Swaminathan et al. (2017) also point out
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that the variance of IPS grows linearly with w(x, a), which
can be Ω(|A|).

This variance issue can be lessened by incorporating a re-
ward estimator q̂(x, a) ≈ q(x, a) as a control variate, re-
sulting in the DR estimator (Dudı́k et al., 2014). DR often
improves the MSE of IPS due to its variance reduction prop-
erty. However, DR still suffers when the number of actions
is large, and it can experience substantial performance dete-
rioration as we demonstrate in our experiments.

3. The Marginalized IPS Estimator
The following proposes a new estimator that circumvents
the challenges of IPS for large action spaces. Our approach
is to bring additional structure into the estimation problem,
providing a path forward despite the minimax optimality of
IPS and DR. In particular, IPS and DR achieve the minimax
optimal MSE of at most O(n−1(Eπ0

[w(x, a)2σ2(x, a) +
w(x, a)2r2max])), which means they are impossible to im-
prove upon in the worst case beyond constant factors (Wang
et al., 2017; Swaminathan et al., 2017), unless we bring in
additional structure.

Our key idea for overcoming the limits of IPS and DR is
to assume the existence of action embeddings as prior in-
formation. The intuition is that this can help the estimator
transfer information between similar actions. More formally,
suppose we are given a de-dimensional action embedding
e ∈ E ⊆ Rde for each action a, where we merely assume
that the embedding is drawn i.i.d. from some unknown dis-
tribution p(e|x, a). The simplest example is to construct
action embeddings using predefined category information
(e.g., movie genres, actors). Then, the embedding distri-
bution is independent of the context and it is deterministic
given the action. Our framework is also applicable to the
most general case of continuous, stochastic, and context-
dependent action embeddings. For example, movies can
be represented by a learned embedding (e.g., matrix factor-
ization, auto-encoder). In this case, the embedding can be
continuous and can depend on the context (e.g., the user of
a recommender system). Moreover, we allow the resulting
embeddings to be stochastic to reflect multiple potential
sources of randomness in generating the action embedding
for full generality.

Using the action embeddings, we now consider an alterna-
tive way to define the value of π,

V (π) : = Ep(x)π(a|x)p(e|x,a)p(r|x,a,e)[r],

where we allow the reward to depend on the action embed-
ding: q(x, a, e) := E[r|x, a, e].

A logged bandit dataset now contains action embeddings for
each observation in D = {(xi, ai, ei, ri)}ni=1, where each
tuple is generated by the logging policy as (x, a, e, r) ∼

Figure 1. Causal Graph Consistent with Assumption 3.2

Note: Grey arrows indicate the existence of causal effect of the tail
variable on the head variable. The dashed red arrow is a direct causal
effect that is ruled out by Assumption 3.2.

p(x)π0(a|x)p(e|x, a)p(r|x, a, e). Our strategy is to lever-
age this additional information for achieving a more accurate
OPE for large action spaces.

To motivate our approach, we introduce two properties char-
acterizing an action embedding.

Assumption 3.1. (Common Embedding Support) The log-
ging policy π0 is said to have common embedding support
for policy π if p(e|x, π) > 0→ p(e|x, π0) > 0 for all e ∈ E
and x ∈ X , where p(e|x, π) :=

∑
a∈A p(e|x, a)π(a|x) is

the marginal distribution over the action embedding space
given context x and policy π.

Assumption 3.1 is analogous to Assumption 2.1, but requires
the common support with respect to the action embedding
space, which can be substantially more compact than the
action space itself. Next, we characterize the expressiveness
of the embedding in the ideal case, but we will relax this
assumption later.

Assumption 3.2. (No Direct Effect) Action a has no direct
effect on the reward r, i.e., a ⊥ r|x, e.

As illustrated in Figure 1, Assumption 3.2 requires that ev-
ery possible effect of a on r be mediated by the observed
embedding e. For now, we rely on the validity of Assump-
tion 3.2, as it is convenient for introducing the proposed
estimator. However, we later show that it is often beneficial
to strategically discard some embedding dimensions and
violate the assumption to achieve a better MSE.

We start the derivation of our new estimator with the obser-
vation that Assumption 3.2 gives us another path to unbiased
estimation of the policy value without requiring Assump-
tion 2.1.

Proposition 3.3. Under Assumption 3.2, we have

V (π) = Ep(x)p(e|x,π)p(r|x,e)[r]

See Appendix B.1 for the proof.

Proposition 3.3 provides another expression of the pol-
icy value without explicitly relying on the action variable
a. This new expression naturally leads to the following
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Table 1. A toy example illustrating the benefits of marginalized importance weights

π0(a|x1) π(a|x1) w(x1, a)

a1 0.0 0.2 N/A
a2 0.2 0.8 4.0
a3 0.8 0.0 0.0

p(e1|a) p(e2|a) p(e3|a)

a1 0.25 0.25 0.5
a2 0.5 0.25 0.25
a3 0.25 0.5 0.25

p(e|x1, π0) p(e|x1, π) w(x1, e)

e1 0.3 0.45 1.5
e2 0.45 0.25 0.55
e3 0.25 0.3 1.2

marginalized inverse propensity score (MIPS) estimator,
which is our main proposal.

V̂MIPS(π;D) :=
1

n

n∑
i=1

p(ei|xi, π)

p(ei|xi, π0)
ri =

1

n

n∑
i=1

w(xi, ei)ri,

where w(x, e) := p(e|x, π)/p(e|x, π0) is the marginal im-
portance weight defined with respect to the marginal distri-
bution over the action embedding space.

To obtain an intuition for the benefits of MIPS, we provide a
toy example in Table 1 with X = {x1}, A = {a1, a2, a3},
and E = {e1, e2, e3}. The left table describes the logging
and target policies with respect to A and implies that As-
sumption 2.1 is violated (π0(a1|x1) = 0.0). The middle
table describes the conditional distribution of the action
embedding e given action a (e.g., probability of a movie
a belonging to a genre e). The right table describes the
marginal distributions over E , which are calculable from
the other two tables. By considering the marginal distri-
bution, Assumption 3.1 is ensured in the right table, even
if Assumption 2.1 is not true in the left table. Moreover,
the maximum importance weight is smaller for the right
table (maxe∈E w(x1, e) < maxa∈A w(x1, a)), which may
contribute to a variance reduction of the resulting estimator.

Below, we formally analyze the key statistical properties of
MIPS and compare them with those of IPS, including the
realistic case where Assumption 3.2 is violated.

3.1. Theoretical Analysis

First, the following proposition shows that MIPS is unbiased
under assumptions different from those of IPS.

Proposition 3.4. Under Assumptions 3.1 and 3.2, MIPS is
unbiased, i.e., ED[V̂MIPS(π;D)] = V (π) for any π. See
Appendix B.2 for the proof.

Proposition 3.4 states that, even when π0 fails to provide
common support over A such that IPS is biased, MIPS can
still be unbiased if π0 provides common support over E
(Assumption 3.1) and e fully captures the causal effect of a
on r (Assumption 3.2).

Having multiple estimators that enable unbiased OPE under
different assumptions is in itself desirable, as we can choose
the appropriate estimator depending on the data generating
process. However, it is also helpful to understand how vio-

lations of the assumptions influence the bias of the resulting
estimator. In particular, for MIPS, it is difficult to verify
whether Assumption 3.2 is true in practice. The following
theorem characterizes the bias of MIPS.

Theorem 3.5. (Bias of MIPS) If Assumption 3.1 is true, but
Assumption 3.2 is violated, MIPS has the following bias.

Bias(V̂MIPS(π))

= Ep(x)p(e|x,π0)

[∑
a<b

π0(a|x, e)π0(b|x, e)

× (q(x, a, e)− q(x, b, e))

× (w(x, b)− w(x, a))
]
,

where a, b ∈ A. See Appendix B.3 for the proof.

Theorem 3.5 suggests that three factors contribute to the
bias of MIPS when Assumption 3.2 is violated. The first
factor is the predictivity of the action embeddings with re-
spect to the actual actions. When action a is predictable
given context x and embedding e, π0(a|x, e) is close to zero
or one (deterministic), meaning that π0(a|x, e)π0(b|x, e) is
close to zero. This suggests that even if Assumption 3.2 is
violated, action embeddings that identify the actions well
still enable a nearly unbiased estimation of MIPS. The sec-
ond factor is the amount of direct effect of the action on the
reward, which is quantified by q(x, a, e)− q(x, b, e). When
the direct effect of a on r is small, q(x, a, e) − q(x, b, e)
also becomes small and so is the bias of MIPS. In an
ideal situation where Assumption 3.2 is satisfied, we have
q(x, a, e) = q(x, b, c) = q(x, e), thus MIPS is unbiased,
which is consistent with Proposition 3.4. Note that the
first two factors suggest that, to reduce the bias, the action
embeddings should be informative so that they are either
predictive of the actions or mediate a large amount of the
causal effect. The final factor is the similarity between log-
ging and target policies quantified by w(x, a) − w(x, b).
When Assumption 3.2 is satisfied, MIPS is unbiased for
any target policy, however, Theorem 3.5 suggests that if
the assumption is not true, MIPS produces a larger bias for
target policies dissimilar from the logging policy.1

Next, we analyze the variance of MIPS, which we show is

1When π = π0, the bias is zero regardless of the other factors
as w(x, a) = w(x, b) = 1, meaning that on-policy estimation is
always unbiased, which is quite intuitive.
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never worse than the variance of IPS and can be substantially
lower.

Theorem 3.6. (Variance Reduction of MIPS) Under As-
sumptions 2.1, 3.1, and 3.2, we have

n
(
VD[V̂IPS(π;D)]− VD[V̂MIPS(π;D)]

)
= Ep(x)p(e|x,π0)

[
Ep(r|x,e)

[
r2
]
Vπ0(a|x,e) [w(x, a)]

]
,

which is non-negative. See Appendix B.4 for the proof.

There are two factors that affect the amount of variance
reduction. The first factor is the second moment of the
reward with respect to the conditional distribution p(r|x, e).
This term becomes large when, for example, the reward is
noisy even after conditioning on the action embedding e.
The second factor is the variance of w(x, a) with respect to
the conditional distribution π0(a|x, e), which becomes large
when (i) w(x, a) has a wide range or (ii) there remain large
variations in a even after conditioning on action embedding
e so that π0(a|x, e) remains stochastic. Therefore, to obtain
a large variance reduction, the action embedding should
ideally not be unnecessarily predictive of the actions.

Finally, the next theorem describes the gain in MSE we can
obtain from MIPS when Assumption 3.2 is violated.

Theorem 3.7. (MSE Gain of MIPS) Under Assumptions 2.1
and 3.1, we have

n
(

MSE(V̂IPS(π))−MSE(V̂MIPS(π))
)

= Ex,a,e∼π0

[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,a,e)[r2]

]
+ 2V (π)Bias(V̂MIPS(π)) + (1− n)Bias(V̂MIPS(π))2

where Ex,a,e∼π0
[·] denotes Ep(x)π0(a|x)p(e|x,a)[·]. See Ap-

pendix B.5 for the proof.

Note that IPS can have some bias when Assumption 2.1 is
not true, possibly producing a greater MSE gain for MIPS.

3.2. Data-Driven Embedding Selection

The analysis in the previous section implies a clear bias-
variance trade-off with respect to the quality of the action
embeddings. Specifically, Theorem 3.5 suggests that the
action embeddings should be as informative as possible to
reduce the bias when Assumption 3.2 is violated. On the
other hand, Theorem 3.6 suggests that the action embed-
dings should be as coarse as possible to gain a greater vari-
ance reduction. Theorem 3.7 summarizes the bias-variance
trade-off in terms of MSE.

A possible criticism to MIPS is Assumption 3.2, as it is hard
to verify whether this assumption is satisfied using only the
observed logged data. However, the above discussion about
the bias-variance trade-off implies that it might be effective

to strategically violate Assumption 3.2 by discarding some
embedding dimensions. This action embedding selection
can lead to a large variance reduction at the cost of intro-
ducing some bias, possibly improving the MSE of MIPS.
To implement the action embedding selection, we adapt the
estimator selection method called SLOPE proposed in Su
et al. (2020b) and Tucker & Lee (2021). SLOPE is based on
Lepski’s principle for bandwidth selection in nonparametric
statistics (Lepski & Spokoiny, 1997) and is used to tune the
hyperparameters of OPE estimators. A benefit of SLOPE
is that it avoids estimating the bias of the estimator, which
is as difficult as OPE. Appendix C describes how to apply
SLOPE to the action embedding selection in our setup, and
Section 4 evaluates its benefit empirically.

3.3. Estimating the Marginal Importance Weights

When using MIPS, we have to estimate w(x, e) even if we
know the logging policy π0. If Assumption 2.1 is true, we
can simply achieve this via the following transformation.

w(x, e) = Eπ0(a|x,e) [w(x, a)] (2)

Eq. (2) implies that we need an estimate of π0(a|x, e),
which we compute by regressing a on (x, e). We can then
estimate w(x, e) as ŵ(x, e) = Eπ̂0(a|x,e) [w(x, a)].2 This
procedure is easy to implement and tractable, even when
the embedding space is high-dimensional and continuous.
Note that, even if there are some deficient actions and As-
sumption 2.1 is violated, we can directly estimate w(x, e)
by casting the density ratio estimation problem into a binary
classification problem as done in Sondhi et al. (2020).

4. Empirical Evaluation
We first evaluate MIPS on synthetic data to identify the
situations where it enables a more accurate OPE. Second,
we validate real-world applicability on data from an online
fashion store. Our experiments are conducted using the
OpenBanditPipeline (OBP)3, an open-source software for
OPE provided by Saito et al. (2020).

4.1. Synthetic Data

For the first set of experiments, we create synthetic data
to be able to compare the estimates to the ground-truth
value of the target policies. To create the data, we sample
10-dimensional context vectors x from the standard nor-
mal distribution. We also sample de-dimensional action
embedding vectors e ∈ E from the following conditional

2Appendix B.7 describes the bias and variance of MIPS with
estimated marginal importance weights ŵ(x, e).

3https://github.com/st-tech/zr-obp

https://github.com/st-tech/zr-obp
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distribution given action a.

p(e|a) =

de∏
k=1

exp(αa,ek)∑
e′∈Ek exp(αa,e′)

, (3)

which is independent of the context x in the synthetic experi-
ment. {αa,ek} is a set of parameters sampled independently
from the standard normal distribution. Each dimension of E
has a cardinality of 10, i.e., Ek = {1, 2, . . . , 10}. We then
synthesize the expected reward as

q(x, e) =

de∑
k=1

ηk ·
(
x>Mxek + θ>x x+ θ>e xek

)
, (4)

where M , θx, and θe are parameter matrices or vectors to
define the expected reward. These parameters are sampled
from a uniform distribution with range [−1, 1]. xek is a
context vector corresponding to the k-th dimension of the
action embedding, which is unobserved to the estimators. ηk
specifies the importance of the k-th dimension of the action
embedding, which is sampled from Dirichlet distribution
so that

∑de
k=1 ηk = 1. Note that if we observe all dimen-

sions of E , then q(x, e) = q(x, a, e). On the other hand,
q(x, e) 6= q(x, a, e), if there are some missing dimensions,
which means that Assumption 3.2 is violated.

We synthesize the logging policy π0 by applying the softmax
function to q(x, a) = Ep(e|a)[q(x, e)] as

π0(a|x) =
exp(β0 · q(x, a))∑

a′∈A exp(β0 · q(x, a′))
, (5)

where β0 is a parameter that controls the optimality and
entropy of the logging policy. A large positive value of
β0 leads to a near-deterministic and well-performing log-
ging policy, while lower values make the logging policy
increasingly worse. In the main text, we use β0 = −1, and
additional results for other values of β0 can be found in
Appendix D.2.

In contrast, the target policy π is defined as

π(a|x) = (1− ε) · I
{
a = arg max

a′∈A
q(x, a′)

}
+ ε/|A|,

where the noise ε ∈ [0, 1] controls the quality of π. In the
main text, we set ε = 0.1, which produces a near-optimal
and near-deterministic target policy. We share additional
results for other values of ε in Appendix D.2.

To summarize, we first sample context x and define the
expected reward q(x, e) as in Eq. (4). We then sample
discrete action a from π0 based on Eq. (5). Given action a,
we sample action embedding e based on Eq. (3). Finally, we
sample the reward as r ∼ N (q(x, e), 4), where N (µ, σ2)
is normal with mean µ and standard deviation σ. Iterating
this procedure n times generates logged data D with n
independent copies of (x, a, e, r).

4.1.1. BASELINES

We compare our estimator with a direct method (DM), IPS,
and DR.4 We use the Random Forest (Breiman, 2001) im-
plemented in scikit-learn (Pedregosa et al., 2011) to obtain
q̂(x, e) for DR and DM. We use the Logistic Regression of
scikit-learn to estimate π̂0(a|x, e) for MIPS. We also report
the results of MIPS with the true importance weights as
“MIPS (true)”. MIPS (true) provides the best performance
we could achieve by improving the procedure for estimating
the importance weights of MIPS.

4.1.2. RESULTS

The following reports and discusses the MSE, squared bias,
and variance of the estimators computed over 100 different
sets of logged data replicated with different seeds.

How does MIPS perform with varying numbers of ac-
tions? First, we evaluate the estimators’ performance
when we vary the number of actions from 10 to 2000. The
sample size is fixed at n = 3000. Figure 2 shows how the
number of actions affects the estimators’ MSE. We observe
that MIPS provides significant improvements over IPS and
DR particularly for larger action sets. Specifically, when
|A| = 10, MSE(V̂IPS)

MSE(V̂MIPS)
= 1.95, while MSE(V̂IPS)

MSE(V̂MIPS)
= 19.64

for |A| = 2000, indicating a significant performance im-
provement of MIPS for larger action spaces. MIPS is also
better than DM, which suffers from high bias. The figure
also shows that MIPS (true) is even better than MIPS, mostly
due to the reduced bias when using the true weights. This ob-
servation implies that there is room for further improvement
in how to estimate the marginal importance weights.

How does MIPS perform with varying sample size?
Next, we compare the estimators under varying numbers
of samples (n ∈ {800, 1600, 3200, 6400, 12800, 25600}).
The number of actions is fixed at |A| = 250. Figure 3
reports how the estimators’ MSE changes with the size of
logged bandit data. MIPS is appealing in particular for small
sample sizes where it outperforms IPS and DR by a larger
margin than in large sample regimes ( MSE(V̂IPS)

MSE(V̂MIPS)
= 8.70

when n = 800, while MSE(V̂IPS)

MSE(V̂MIPS)
= 3.42 when n =

25600). With the growing sample size, MIPS, IPS, and
DR improve their MSE as their variance decreases. In con-

4Appendix D.2 provides more comprehensive results includ-
ing Switch-DR (Wang et al., 2017), More Robust DR (Farajtabar
et al., 2018), DR with Optimistic Shrinkage (DRos) (Su et al.,
2020a), and DR-λ (Metelli et al., 2021) as additional baselines.
The additional experimental results suggest that all of these ex-
isting estimators based on IPS weighting experience significant
accuracy deterioration with large action spaces due to either large
bias or variance. Moreover, we observe that MIPS is more robust
and outperforms all these baselines in a range of settings.
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Figure 2. MSE (on log-scale) with varying number of actions. Figure 3. MSE (on log-scale) with varying number of samples.

Figure 4. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings.

Figure 5. MSE, Squared Bias, and Variance of MIPS with or without data-driven action embedding selection (SLOPE).

trast, the accuracy of DM does not change across different
sample sizes, and it performs better than IPS and DR from
n = 800 to 3200. However, MIPS is better than DM even
when the sample size is small, as the bias of MIPS is much
smaller than that of DM. Moreover, the gap between MIPS
and DM grows with the sample size, as the variance of
MIPS decreases while DM remains highly biased.

How does MIPS perform when Assumption 3.2 is vio-
lated? Here, we evaluate the accuracy of MIPS when As-
sumption 3.2 is violated. To adjust the amount of violation,
we modify the action embedding space and reduce the cardi-
nality of each dimension of E to 2 (i.e., Ek = {0, 1}), while
we increase the number of dimensions to 20 (de = 20).
This leads to |E| = 220 = 1, 048, 576, and we can now drop
some dimensions to increase violation. In particular, when
we observe all dimensions of E , Assumption 3.2 is perfectly

satisfied. However, when we withhold {0, 2, 4, . . . , 18} em-
bedding dimensions, the assumption becomes increasingly
invalid. When many dimensions are missing, the bias of
MIPS is expected to increase as suggested in Theorem 3.5,
potentially leading to a worse MSE.

Figure 4 shows how the MSE, squared bias, and variance of
the estimators change with varying numbers of unobserved
embedding dimensions. Somewhat surprisingly, we observe
that MIPS and MIPS (true) perform better when there are
some missing dimensions, even if it leads to the violated
assumption. Specifically, the MSE of MIPS and MIPS (true)
is minimized when there are 8 and 10 missing dimensions
(out of 20), respectively. This phenomenon is due to the
reduced variance. The third column of Figure 4 implies that
the variance of MIPS and MIPS (true) decreases substan-
tially with an increasing number of unobserved dimensions,
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Figure 6. CDF of relative squared error w.r.t IPS.

while the bias increases with the violated assumption as ex-
pected. These observations suggest that MIPS can be highly
effective despite the violated assumption.

How does data-driven embedding selection perform
combined with MIPS? The previous section showed that
there is a potential to improve the accuracy of MIPS by
selecting a subset of dimensions for estimating the marginal
importance weights. We now evaluate whether we can ef-
fectively address this embedding selection problem.

Figure 5 compares the MSE, squared bias, and variance of
MIPS and MIPS with SLOPE (MIPS w/ SLOPE) using the
same embedding space as in the previous section. Note that
we vary the sample size n and fix |A| = 250. The results
suggest that the data-driven embedding selection provides
a substantial improvement in MSE for small sample sizes.
As shown in the second and third columns in Figure 5, the
embedding selection significantly reduces the variance at
the cost of introducing some bias by strategically violating
the assumption, which results in a better MSE.

Other benefits of MIPS. MIPS has additional benefits
over the conventional estimators. In fact, in addition to the
case with many actions, IPS is also vulnerable when the
reward is noisy or logging and target policies differ substan-
tially (see Eq. (1)). Appendix D.2 empirically investigates
the additional benefits of MIPS with varying levels of noise
and varying logging/target policies with a fixed action set.
We observe that MIPS is substantially more robust to the
added noise and changes in policies than IPS or DR, which
provides further arguments for the applicability of MIPS.

4.2. Real-World Data

To assess the real-world applicability of MIPS, we now
evaluate MIPS on real-world bandit data. In particular, we

use the Open Bandit Dataset (OBD)5 (Saito et al., 2020),
a publicly available logged bandit dataset collected on a
large-scale fashion e-commerce platform. We use 100,000
observations that are randomly sub-sampled from the “ALL”
campaign of OBD. The dataset contains user contexts x,
fashion items to recommend as action a ∈ A where |A| =
240, and resulting clicks as reward r ∈ {0, 1}. OBD also
includes 4-dimensional action embedding vectors consisting
of hierarchical category information about the fashion items.

The dataset consists of two sets of logged bandit data
collected by two different policies (uniform random and
Thompson sampling) during an A/B test of these policies.
We regard uniform random and Thompson sampling as log-
ging and target policies, respectively, to perform an evalua-
tion of OPE estimators. Appendix D.3 describes the detailed
experimental procedure to evaluate the accuracy of the esti-
mators on real-world bandit data.

Results. We evaluate MIPS (w/o SLOPE) and MIPS
(w/ SLOPE) in comparison to DM, IPS, DR, Switch-DR,
MRDR, DRos, and DR-λ. We apply SLOPE to tune the
built-in hyperparameters of Switch-DR, DRos, and DR-λ.
Figure 6 compares the estimators by drawing the cumulative
distribution function (CDF) of their squared errors estimated
with 150 different bootstrapped samples of the logged data.
Note that the squared errors are normalized by that of IPS.
We find that MIPS (w/ SLOPE) outperforms IPS in about
80% of the simulation runs, while other estimators, includ-
ing MIPS (w/o SLOPE), work similarly to IPS. This result
demonstrates the real-world applicability of our estimator as
well as the importance of implementing action embedding
selection in practice. We report similar results for other
sample sizes (from 10,000 to 500,000) in Appendix D.3.

5. Conclusion
We explore the problem of OPE for large action spaces. In
this setting, existing estimators based on IPS suffer from
impractical variance, which limits their applicability. This
problem is highly relevant for practical applications, as
many real decision making problems such as recommender
systems have to deal with a large number of discrete actions.
To achieve an accurate OPE for large action spaces, we
propose the MIPS estimator, which builds on the marginal
importance weights computed with action embeddings. We
characterize the important statistical properties of the pro-
posed estimator and discuss when it is superior to the con-
ventional ones. Extensive experiments demonstrate that
MIPS provides a significant gain in MSE when the vanilla
importance weights become large due to large action spaces,
substantially outperforming IPS and related estimators.

5https://research.zozo.com/data.html
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A. Related Work
Off-Policy Evaluation: Off-policy evaluation of counterfactual policies has extensively been studied in both contextual
bandits (Dudı́k et al., 2014; Wang et al., 2017; Farajtabar et al., 2018; Su et al., 2019; 2020a; Kallus et al., 2021; Saito
et al., 2021; Metelli et al., 2021; Saito & Joachims, 2021) and reinforcement learning (RL) (Jiang & Li, 2016; Thomas &
Brunskill, 2016; Kallus & Uehara, 2020; Xie et al., 2019; Liu et al., 2020a; 2018). There are three main approaches in the
literature. The first approach is Direct Model (DM), which estimates the policy value based on the estimated reward q̂. DM
has a lower variance than IPS, and is also proposed as an approach to deal with support deficient data (Sachdeva et al., 2020)
where IPS is biased. A drawback is that it is susceptible to misspecification of the reward function. This misspecification
issue is problematic, as the extent of misspecification cannot be easily evaluated for real-world data (Farajtabar et al., 2018;
Saito et al., 2020; Voloshin et al., 2019). The second approach is IPS, which estimates the value of a policy by applying
importance weighting to the observed reward. With some assumptions for identification such as common support, IPS
is unbiased and consistent. However, IPS can suffer from high bias and variance when the action space is large. It can
have a high bias when the logging policy fails to satisfy the common support condition, which is likely to occur for large
action spaces (Sachdeva et al., 2020). Variance is also a critical issue especially when the action space is large, as the
importance weights are likely to take larger values. The weight clipping (Su et al., 2019; 2020a; Swaminathan & Joachims,
2015b) and normalization (Swaminathan & Joachims, 2015c) are often used to address the variance issue, but they produce
additional bias. Thus, DR has gained particular attention as the third approach. This estimator is a hybrid of the previous
two approaches, and can achieve a lower bias than DM, and a lower variance than IPS (Farajtabar et al., 2018; Dudı́k
et al., 2014). It can also achieve the lowest possible asymptotic variance, a property known as efficiency (Narita et al.,
2019). Several recent works have extended DR to improve its performance with small samples (Su et al., 2020a; Wang
et al., 2017) or under model misspecification (Farajtabar et al., 2018). Though there are a number of extensions of DR
both in bandits (as described above) and RL (Jiang & Li, 2016; Thomas & Brunskill, 2016; Kallus & Uehara, 2020), none
of them tackle the large (discrete) action space. Demirer et al. (2019) describe an estimator for finitely many possible
actions as a special case of their main proposal, which is for continuous action space. However, this method is based on
a linearity assumption of the reward function, which rarely holds in practice. Moreover, the bias arises from violating
the assumption and the variance reduction due to the additional assumption are not analyzed. Kallus & Zhou (2018)
formulate the problem of OPE for continuous action spaces and propose some estimators building on the kernel smoothing
in nonparametric statistics. Specifically, kernel functions are used to infer the rewards among similar continuous actions
where the bias-variance trade-off is controlled by a bandwidth hyperparameter. If every dimension of the action embedding
space E is continuous, the continuous-action estimators of Kallus & Zhou (2018) might be applied to our setup. However,
this naive application can suffer from the curse of dimensionality where the kernel smoothing performs dramatically worse
as the number of embedding dimensions increases. In contrast, MIPS avoids the curse of dimensionality by estimating the
marginal importance weights via supervised classification as in Section 3.3.

Note that there is an estimator called marginalized importance sampling in OPE of RL policies (Xie et al., 2019; Liu et al.,
2020b; 2018). This method estimates the state marginal distribution and applies importance weighting with respect to this
marginal distribution rather than the trajectory distribution. Although marginalization is a key trick of this estimator, it is
aimed at resolving the curse of horizon, a problem specific to RL. In contrast, our approach utilizes the marginal distribution
over action embeddings to deal with large action spaces. Applications of our estimator are not limited to RL.

Off-Policy Evaluation for Slate and Ranking Policies: Another line of work that shares the similar motivation to ours
is OPE of slate or ranking policies (Li et al., 2018; McInerney et al., 2020; Saito, 2020; Swaminathan et al., 2017; Vlassis
et al., 2021; Su et al., 2020a; Kiyohara et al., 2022; Lopez et al., 2021). In this setting, the estimators have to handle
the combinatorial action space, which could be very large even if the number of unique actions is not. Therefore, some
additional assumptions are imposed to make the combinatorial action space tractable. A primary problem setting in this
direction is OPE for slate bandit policies, where it is assumed that only a single, slate-level reward is observed for each
data. Swaminathan et al. (2017) tackle this setting by positing a linearity assumption on the reward function. The proposed
pseudoinverse (PI) estimator was shown to provide an exponential gain in the sample complexity over IPS. Following this
seminal work, Su et al. (2020a) extend their Doubly Robust with Optimistic Shrinkage, originally proposed for the general
OPE problem, to the slate action case. Vlassis et al. (2021) improve the PI estimator by optimizing a set of control variates.
Although PI is compelling, applications of this class of estimators are limited to the specific problem of slate bandits. On
the other hand, our framework is more general and applicable not only to slate bandits, but also to other problem instances
including OPE for ranking policies with observable slot-level rewards (described below) or general contextual bandits with
large action spaces. In addition, all estimators for slate bandits rely on the linearity assumption, while our MIPS builds on a
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different assumption about the quality of the action embedding. Thus, our estimator provides a new option to choose from to
achieve an accurate OPE in large-scale problems.

Another similar setting is OPE for ranking policies where it is assumed that the rewards for every slot in a ranking (slot-level
rewards) are observable, a setting also known as semi-bandit feedback. PI and its variants discussed above are applicable
to this setting, but McInerney et al. (2020) empirically verify that they do not work well, as they do not utilize additional
information about the slot-level rewards. To leverage slot-level rewards to further improve OPE, assumptions are made to
capture different types of user behaviors to control the bias-variance trade-off in OPE. For example, Li et al. (2018) assume
that users interact with items presented in different positions of a ranking totally independently. In contrast, McInerney et al.
(2020) and Kiyohara et al. (2022) assume that users go down a ranking from top to bottom. These assumptions correspond
to click models such as cascade model in information retrieval (Guo et al., 2009; Chuklin et al., 2015) and are useful in
reducing the variance. However, whether these assumptions are reasonable depends highly on a ranking interface and
real user behavior. If the assumption fails to capture real user behaviors, this approach can produce unexpected bias. For
example, the cascade model is only applicable when a ranking interface is vertical, however, real-world ranking interfaces
are often more complex (Guo et al., 2020). Moreover, real-world user behaviors are too diverse to model with a single,
universal assumption (Borisov et al., 2016). In contrast, our approach is applicable to any ranking interfaces, once they
are represented as action embeddings, without assuming any particular user behavior. Moreover, ours is more general in
that its application is not limited to information retrieval and recommender systems, but includes robotics, education, or
personalized medicine where click models are not applicable.

Reinforcement Learning for Large Action Spaces: Although we focus on OPE, there have been several attempts to
enable high-performance policy learning for large action spaces. A typical approach is to factorize the action space into
binary sub-spaces (Pazis & Parr, 2011; Dulac-Arnold et al., 2012). For example, Pazis & Parr (2011) represent each
action with a binary format and train a value function for each bit. On the other hand, Van Hasselt & Wiering (2009) and
Dulac-Arnold et al. (2015) assume the existence of continuous representations of discrete actions as prior knowledge. They
perform policy gradients with the continuous actions and search the nearest discrete action. Similar to these works, we
assume the existence of action embeddings and propose to use that prior information to enable an accurate OPE for large
action spaces. We also analyze the bias-variance trade-off of the resulting estimator and relate it to the quality of the action
embeddings. Some recent works also tackle how to learn useful action representations from only available data. Tennenholtz
& Mannor (2019) achieve this by leveraging expert demonstrations, while Chandak et al. (2019) perform supervised learning
to predict the state transitions and obtain action representations with no prior knowledge. Following these works, it may be
valuable to develop an estimator which works without any prior information about the actions as our future studies.

Multi-Armed Bandits with Side Information: There are two prominent approaches to deal with large or infinite action
spaces in the online bandit literature (Krishnamurthy et al., 2019; Slivkins, 2019). The first one is the parametric approach
such as linear or combinatorial bandits, which assumes that the expected reward can be represented as a parametric function
of the action such as a linear function (Chu et al., 2011; Agrawal & Goyal, 2013). There is also a nonparametric approach,
which typically makes much weaker assumptions about the rewards, e.g., Lipschitz assumptions. Lipschitz bandits have
been studied to address large, structured action spaces such as the [0, 1] interval, where the applications range from dynamic
pricing to ad auction. A basic idea in this literature is that similar arms should have similar quality, as per Lipschitz-continuity
or some corresponding assumptions on the structure of the action space. The Lipschitz assumption was introduced by
Agrawal (1995) to the bandit setting. Kleinberg (2004) optimally solve this problem in the worst case. Kleinberg et al.
(2019) and Bubeck et al. (2011) rely on what is called zooming algorithms, which gradually zoom in to the more promising
regions of the action space to achieve data-dependent regret bounds. Further works are surveyed in Slivkins (2019).

Causal Inference with Surrogates: From a statistical standpoint, causal inference with surrogates is a related area (Athey
et al., 2019; 2020; Kallus & Mao, 2020; Chen & Ritzwoller, 2021). Its aim is to identify and estimate the causal effect
of some treatments (e.g., job training) on a primary outcome, which is unobservable without waiting for decades (e.g.,
lifetime earnings) (Athey et al., 2019). Instead of waiting for a long period to collect the data, these works assume the
availability of surrogate outcomes such as test scores and college attendance rates, which could be observed in a much shorter
period (Athey et al., 2019). In particular, Athey et al. (2019) build on what is called the surrogacy condition to identify the
average treatment effect of treatments on the primary outcome. The surrogacy condition is analogous to Assumption 3.2
and states that there should not be any direct effect of treatments on the primary outcome. Although our data generating
process and assumptions share a similar structure, we would argue that our motivation is to enable an accurate OPE of
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decision making policies for large action spaces, which is quite different from identifying the average causal effect of binary
treatments on a long-term outcome.

B. Proofs, Derivations, and Additional Analysis
B.1. Proof of Proposition 3.3

Proof.

V (π) = Ep(x)π(a|x)p(e|x,a)[q(x, a, e)]
= Ep(x)π(a|x)p(e|x,a)[q(x, e)] (6)

= Ep(x)

[∑
a∈A

π(a|x)
∑
e∈E

p(e|x, a) · q(x, e)

]

= Ep(x)

[∑
e∈E

q(x, e) ·

(∑
a∈A

π(a|x) · p(e|x, a)

)]

= Ep(x)

[∑
e∈E

p(e|x, π) · q(x, e)

]
(7)

= Ep(x)p(e|x,π)[q(x, e)]
= Ep(x)p(e|x,π)p(r|x,e)[r]

where we use Assumption 3.2 in Eq. (6) and p(e|x, π) =
∑
a∈A π(a|x) · p(e|x, a) in Eq. (7).

B.2. Proof of Proposition 3.4

Proof. From the linearity of expectation, we have ED[V̂MIPS(π;D)] = Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]. Thus, we
calculate only the expectation of w(x, e)r (RHS of the equation) below.

Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]

= Ep(x)π0(a|x)p(e|x,a)[w(x, e) · q(x, a, e)]
= Ep(x)π0(a|x)p(e|x,a)[w(x, e) · q(x, e)] (8)

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, a)
p(e|x, π)

p(e|x, π0)
q(x, e)

]

= Ep(x)

[∑
e∈E

p(e|x, π)

p(e|x, π0)
· q(x, e) ·

(∑
a∈A

p(e|x, a) · π0(a|x)

)]

= Ep(x)

[∑
e∈E

p(e|x, π)

p(e|x, π0)
· p(e|x, π0) · q(x, e)

]
(9)

= Ep(x)p(e|x,π)[q(x, e)]
= Ep(x)p(e|x,π)p(r|x,e)[r]
= V (π)

where we use Assumption 3.2 in Eq. (8) and p(e|x, π0) =
∑
a∈A π0(a|x) · p(e|x, a) in Eq. (9).

B.3. Proof of Theorem 3.5

To prove Theorem 3.5, we first state a lemma.

Lemma B.1. For real-valued, bounded functions f : N→ R, g : N→ R, h : N→ R where
∑
a∈[m] g(a) = 1, we have∑

a∈[m]

f(a)g(a)
(
h(a)−

∑
b∈[m]

g(b)h(b)
)

=
∑

a<b≤m

g(a)g(b)(h(a)− h(b))(f(a)− f(b)) (10)
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Proof. We prove this lemma via induction. First, we show the m = 2 case below.

f(1)g(1) (h(1)− (g(1)h(1) + g(2)h(2))) + f(2)g(2) (h(2)− (g(1)h(1) + g(2)h(2)))

= f(1)g(1)h(1)− f(1)g(1)(g(1)h(1) + g(2)h(2)) + f(2)g(2)h(2)− f(2)g(2)(g(1)h(1) + g(2)h(2))

= f(1)g(1)h(1)− f(1)g(1)((1− g(2))h(1) + g(2)h(2)) + f(2)g(2)h(2)− f(2)g(2)(g(1)h(1) + (1− g(1))h(2))

= −f(1)g(1)(−g(2)h(1) + g(2)h(2))− f(2)g(2)(g(1)h(1)− g(1)h(2))

= −f(1)g(1)g(2)(h(2)− h(1)) + f(2)g(1)g(2)(h(2)− h(1))

= g(1)g(2)(h(2)− h(1))(f(2)− f(1))

Note that g(1) + g(2) = 1 from the statement.

Next, we assume Eq. (10) is true for the m = k − 1 case and show that it is also true for the m = k case. First, note that∑
a<b≤k

g(a)g(b)(h(a)− h(b))(f(a)− f(b))

=
∑

a<b≤k−1

g(a)g(b)(h(a)− h(b))(f(a)− f(b)) +
∑

a∈[k−1]

g(a)g(k)(h(a)− h(k))(f(a)− f(k))

Then, we have∑
a∈[k]

f(a)g(a)
(
h(a)−

∑
b∈[k]

g(b)h(b)
)

=
∑

a∈[k−1]

f(a)g(a)
(
h(a)−

∑
b∈[k]

g(b)h(b)
)

+ f(k)g(k)
(
h(k)−

∑
b∈[k]

g(b)h(b)
)

=
∑

a∈[k−1]

f(a)g(a)

(h(a)−
∑

b∈[k−1]

g(b)h(b)
)
− g(k)h(k)

+ f(k)g(k)h(k)− f(k)g(k)
∑
a∈[k]

g(a)h(a)

=
∑

a∈[k−1]

f(a)g(a)
(
h(a)−

∑
b∈[k−1]

g(b)h(b)
)
− g(k)h(k)

∑
a∈[k−1]

f(a)g(a) + f(k)g(k)h(k)− f(k)g(k)
∑
a∈[k]

g(a)h(a)

=
∑

a∈[k−1]

f(a)g(a)
(
h(a)−

∑
b∈[k−1]

g(b)h(b)
)

− g(k)h(k)
∑

a∈[k−1]

f(a)g(a) + f(k)h(k)g(k)− f(k)g(k)
∑

a∈[k−1]

g(a)h(a)− f(k)g(k)g(k)h(k)

=
(
1− g(k)

) ∑
a∈[k−1]

f(a)g̃(a)

(1− g(k)
)(
h(a)−

∑
b∈[k−1]

g̃(b)h(b)
)

+ g(k)h(a)


− g(k)h(k)

∑
a∈[k−1]

f(a)g(a) + f(k)h(k)g(k)− f(k)g(k)
∑

a∈[k−1]

g(a)h(a)− f(k)g(k)h(k)

1−
∑

a∈[k−1]

g(a)


=
(
1− g(k)

)2 ∑
a∈[k−1]

f(a)g̃(a)
(
h(a)−

∑
b∈[k−1]

g̃(b)h(b)
)

+ g(k)
∑

a∈[k−1]

f(a)g(a)h(a)− g(k)h(k)
∑

a∈[k−1]

f(a)g(a)− f(k)g(k)
∑

a∈[k−1]

g(a)h(a) + f(k)g(k)h(k)
∑

a∈[k−1]

g(a)

(11)

where we use g(k) = 1−
∑
a∈[k−1] g(a) and define g̃(a) := g(a)/(

∑
a∈[k−1] g(a)) = g(a)/(1− g(k)).
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The first term of Eq. (11) is the m = k − 1 case, so we have the following from the assumption of induction.(
1− g(k)

)2 ∑
a∈[k−1]

f(a)g̃(a)
(
h(a)−

∑
b∈[k−1]

g̃(b)h(b)
)

=
(
1− g(k)

)2 ∑
a<b≤k−1

g̃(a)g̃(b)(h(a)− h(b))(f(a)− f(b))

=
∑

a<b≤k−1

g(a)g(b)(h(a)− h(b))(f(a)− f(b))

Note that
∑
a∈[k−1] g̃(a) = 1. Rearranging the remaining terms of Eq. (11) yields∑
a∈[k]

f(a)g(a)
(
h(a)−

∑
b∈[k]

g(b)h(b)
)

=
∑

a<b≤k−1

g(a)g(b)(h(a)− h(b))(f(a)− f(b)) +
∑

a∈[k−1]

g(a)g(k)(h(a)− h(k))(f(a)− f(k))

Implying that the m = k case is true if the m = k − 1 case is true.

We then use the above Lemma to prove Theorem 3.5.

Proof.

Bias(V̂MIPS(π)) = Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]− V (π)

= Ep(x)π0(a|x)p(e|x,a)[w(x, e) · q(x, a, e)]− Ep(x)π(a|x)p(e|x,a)[q(x, a, e)]

= Ep(x)π0(a|x)

[∑
e∈E

p(e|x, a) · w(x, e) · q(x, a, e)

]
− Ep(x)π(a|x)

[∑
e∈E

p(e|x, a) · q(x, a, e)

]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, π0) · π0(a|x, e)
π0(a|x)

· w(x, e) · q(x, a, e)

]

− Ep(x)

[∑
a∈A

π(a|x)
∑
e∈E

p(e|x, π0) · π0(a|x, e)
π0(a|x)

· q(x, a, e)

]
(12)

= Ep(x)

[∑
e∈E

p(e|x, π0) · w(x, e)
∑
a∈A

π0(a|x, e) · q(x, a, e)

]

− Ep(x)

[∑
e∈E

p(e|x, π0)
∑
a∈A

w(x, a) · π0(a|x, e) · q(x, a, e)

]

= Ep(x)p(e|x,π0)

[
w(x, e)

∑
a∈A

π0(a|x, e) · q(x, a, e)

]

− Ep(x)p(e|x,π0)

[∑
a∈A

w(x, a) · π0(a|x, e) · q(x, a, e)

]

= Ep(x)p(e|x,π0)

[∑
a∈A

w(x, a) · π0(a|x, e)
∑
b∈A

π0(b|x, e) · q(x, b, c)

]

− Ep(x)p(e|x,π0)

[∑
a∈A

w(x, a) · π0(a|x, e) · q(x, a, e)

]
(13)

= Ep(x)p(e|x,π0)

[∑
a∈A

w(x, a) · π0(a|x, e) ·

((∑
b∈A

π0(b|x, e) · q(x, b, c)
)
− q(x, a, e)

)]

where we use p(e|x, a) = p(e|x,π0)·π0(a|x,e)
π0(a|x) in Eq. (12) and w(x, e) = Eπ0(a|x,e)[w(x, a)] in Eq. (13).

By applying Lemma A.1 to the last line (setting f(a) = w(·, a), g(a) = π0(a|·, ·), h(a) = q(·, a, ·)), we get the final
expression of the bias.
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B.4. Proof of Theorem 3.6

Proof. Under Assumptions 2.1, 3.1, and 3.2, both IPS and MIPS are unbiased. Thus, the difference in their variance is
attributed to the difference in their second moment, which is calculated below.

Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)r]− Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]

= Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)2 · r2]− Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)2 · r2]

= Ep(x)π0(a|x)p(e|x,a)
[
w(x, a)2 · Ep(r|x,a,e)[r2]

]
− Ep(x)π0(a|x)p(e|x,a)

[
w(x, e)2 · Ep(r|x,a,e)[r2]

]
= Ep(x)π0(a|x)p(e|x,a)

[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,e)[r2]

]
(14)

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, a) ·
(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,e)[r2]

]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, π0) · π0(a|x, e)
π0(a|x)

·
(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,e)[r2]

]
(15)

= Ep(x)

[∑
e∈E

p(e|x, π0) · Ep(r|x,e)[r2]
∑
a∈A

π0(a|x, e) ·
(
w(x, a)2 − w(x, e)2

)]

= Ep(x)p(e|x,π0)

[
Ep(r|x,e)[r2] ·

((∑
a∈A

π0(a|x, e) · w(x, a)2
)
− w(x, e)2

)]

where we use Assumption 3.2 in Eq. (14), p(e|x, a) = p(e|x,π0)·π0(a|x,e)
π0(a|x) in Eq. (15). Here, we have

(∑
a∈A

π0(a|x, e) · w(x, a)2

)
− w(x, e)2 =

(∑
a∈A

π0(a|x, e) · w(x, a)2

)
−

(∑
a∈A

π0(a|x, e) · w(x, a)

)2

= Eπ0(a|x,e)
[
w(x, a)2

]
−
(
Eπ0(a|x,e) [w(x, a)]

)2
= Vπ0(a|x,e) [w(x, a)]

where we use w(x, e) = Eπ0(a|x,e) [w(x, a)].

Therefore,

Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)2 · r2]− Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)2 · r2]

= Ep(x)p(e|x,π0)

[
Ep(r|x,e)[r2] ·

((∑
a∈A

π0(a|x, e) · w(x, a)2
)
− w(x, e)2

)]
= Ep(x)p(e|x,π0)

[
Ep(r|x,e)[r2] · Vπ0(a|x,e) [w(x, a)]

]
Finally, as samples are assumed to be i.i.d., nVD[V̂IPS(π;D)] = Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)r] and
nVD[V̂MIPS(π;D)] = Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r] .

B.5. Proof of Theorem 3.7

Proof. First, we express the MSE gain of MIPS over the vanilla IPS with their bias and variance as follows.

MSE
(
V̂IPS(π)

)
−MSE

(
V̂MIPS(π)

)
= VD[V̂IPS(π;D)]− VD[V̂MIPS(π;D)]− Bias(V̂MIPS(π))2

Since the samples are assumed to be i.i.d., we can simply rescale the MSE gain as follows.

n
(

MSE
(
V̂IPS(π)

)
−MSE

(
V̂MIPS(π)

))
= Vx,a,e,r[w(x, a)r]− Vx,a,e,r[w(x, e)r]− nBias(V̂MIPS(π))2
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Below, we calculate the difference in variance.

Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)r]− Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]

= Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)2 · r2]− V (π)2

−
(
Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)2 · r2]−

(
V (π) + Bias(V̂MIPS(π))

)2)
= Ep(x)π0(a|x)p(e|x,a)

[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,a,e)[r2]

]
− V (π)2 +

(
V (π)2 + 2V (π)Bias(V̂MIPS(π)) + Bias(V̂MIPS(π))2

)
= Ep(x)π0(a|x)p(e|x,a)

[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,a,e)[r2]

]
+ 2V (π)Bias(V̂MIPS(π)) + Bias(V̂MIPS(π))2

Thus, we have

n
(
VD[V̂IPS(π;D)]− VD[V̂MIPS(π;D)]− Bias(V̂MIPS(π))2

)
= Ep(x)π0(a|x)p(e|x,a)

[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,a,e)[r2]

]
+ 2V (π)Bias(V̂MIPS(π)) + (1− n)Bias(V̂MIPS(π))2

The first term becomes large when the scale of the marginal importance weights is smaller than that of the vanilla importance
weights. The second term becomes large when the value of π is large and MIPS overestimates it by a large margin. The
third term can take a large negative value when the sample size is large and the bias of MIPS is large. This summarizes the
bias-variance trade-off between the vanilla IPS and MIPS. When the sample size is small, the first and second terms in the
MSE gain are dominant, and MIPS is more appealing due to its variance reduction property. However, as the sample size
gets larger, the bias becomes the dominant term, and IPS is expected to overtake MIPS at some point. We would argue that,
when the action space is large, the variance reduction of MIPS often provides the gain in MSE, as the variance components
are more dominant, which is supported in our experiments.

B.6. Derivation of Eq. (2)

w(x, e) =
p(e|x, π)

p(e|x, π0)

=

∑
a∈A p(e|x, a) · π(a|x)

p(e|x, π0)

=
p(e|x, π0)

∑
a∈A(π0(a|x, e)/π0(a|x)) · π(a|x)

p(e|x, π0)
(16)

=
∑
a∈A

π0(a|x, e) π(a|x)

π0(a|x)

= Eπ0(a|x,e) [w(x, a)]

where we use p(e|x, a) = p(e|x,π0)·π0(a|x,e)
π0(a|x) in Eq. (16).

B.7. Bias and Variance of MIPS with Estimated Marginal Importance Weights

Theorem B.2. (Bias of MIPS with Estimated Marginal Importance Weights) If Assumption 3.1 is true, but Assumption 3.2
is violated, MIPS has the following bias.

Bias(V̂MIPS(π; ŵ)) = Bias(V̂MIPS(π))− Ep(x)p(e|x,π) [δ(x, e) · q(x, π0, e)] ,

where V̂MIPS(π; ŵ) := n−1
∑n
i=1 ŵ(xi, ei)ri, δ(x, e) := 1 − (ŵ(x, e)/w(x, e)), and q(x, π0, e) :=

∑
a∈A π0(a|x, e) ·

q(x, a, e).
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Proof.

Bias(V̂MIPS(π; ŵ)) = Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[ŵ(x, e)r]− V (π) (17)

= Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)
[
(ŵ(x, e)− w(x, e)) · r

]
+ Bias(V̂MIPS(π)) (18)

where we use ED[V̂MIPS(π;D, ŵ)] = Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[ŵ(x, e)r] (as samples are assumed to be i.i.d.) in Eq. (17)
and decompose the bias into the bias of MIPS with the true w(x, e) and bias due to the estimation error of ŵ(x, e) in
Eq. (18). We know the bias of MIPS with the true weight from Theorem 3.5, so we calculate only the bias due to estimating
the weight.

Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[(ŵ(x, e)− w(x, e)) · r]
= Ep(x)π0(a|x)p(e|x,a)[(ŵ(x, e)− w(x, e)) · q(x, a, e)]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, a) · (ŵ(x, e)− w(x, e)) · q(x, a, e)

]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, π0) · π0(a|x, e)
π0(a|x)

· (ŵ(x, e)− w(x, e)) · q(x, a, e)

]
(19)

= Ep(x)

[∑
e∈E

p(e|x, π0) · (ŵ(x, e)− w(x, e))
∑
a∈A

π0(a|x, e) · q(x, a, e)

]

= −Ep(x)

[∑
e∈E

p(e|x, π) · δ(x, e) · q(x, π0, e)

]
(20)

= −Ep(x)p(e|x,π) [δ(x, e) · q(x, π0, e)]

where we use p(e|x, a) = p(e|x,π0)·π0(a|x,e)
π0(a|x) in Eq. (19) and q(x, π0, e) =

∑
a∈A π0(a|x, e) · q(x, a, e) in Eq. (20).

Theorem B.3. (Variance of MIPS with Estimated Marginal Importance Weights) Under Assumptions 3.1 and 3.2, we have

nVD(V̂MIPS(π;D, ŵ)) = Ep(x)p(e|x,π)
[
(1− δ(x, e))2 · w(x, e) · σ2(x, π0, e)

]
+ Ep(x)

[
Vπ0(a|x)p(e|x,a) [ŵ(x, e) · q(x, a, e)]

]
+ Vp(x)

[
Ep(e|x,π) [(1− δ(x, e)) · q(x, π0, e)]

]
where δ(x, e) := 1−(ŵ(x, e)/w(x, e)), q(x, π0, e) :=

∑
a∈A π0(a|x, e)·q(x, a, e), and σ2(x, π0, e) :=

∑
a∈A π0(a|x, e)·

σ2(x, a, e).

Proof. Since the samples are assumed to be i.i.d., we have

nVD(V̂MIPS(π;D, ŵ)) = Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e) [ŵ(x, e)r] .

Below we apply the law of total variance twice to the RHS of the above equation.

Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e) [ŵ(x, e)r] = Ep(x)π0(a|x)p(e|x,a)
[
ŵ(x, e)2 · Vp(r|x,a,e)[r]

]
+ Vp(x)π0(a|x)p(e|x,a)

[
ŵ(x, e) · Ep(r|x,a,e)[r]

]
= Ep(x)π0(a|x)p(e|x,a)

[
ŵ(x, e)2 · σ2(x, a, e)

]
+ Vp(x)π0(a|x)p(e|x,a) [ŵ(x, e) · q(x, a, e)]

= Ep(x)π0(a|x)p(e|x,a)
[
ŵ(x, e)2 · σ2(x, a, e)

]
+ Ep(x)

[
Vπ0(a|x)p(e|x,a) [ŵ(x, e) · q(x, a, e)]

]
+ Vp(x)

[
Eπ0(a|x)p(e|x,a) [ŵ(x, e) · q(x, a, e)]

]
= Ep(x)p(e|x,π)

[
(1− δ(x, e))2 · w(x, e) · σ2(x, π0, e)

]
+ Ep(x)

[
Vπ0(a|x)p(e|x,a) [ŵ(x, e) · q(x, a, e)]

]
+ Vp(x)

[
Ep(e|x,π) [(1− δ(x, e)) · q(x, π0, e)]

]
(21)
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where we use Eπ0(a|x)p(e|x,a)[ŵ(x, e)2σ2(x, a, e)] = Ep(e|x,π)[(1 − δ(x, e))2w(x, e)σ2(x, π0, e)] and
Eπ0(a|x)p(e|x,a)[ŵ(x, e)q(x, a, e)] = Ep(e|x,π)[(1− δ(x, e))q(x, π0, e)] in Eq. (21)

C. Data-Driven Action Feature Selection Based on Tucker & Lee (2021) and Su et al. (2020b)
Wang et al. (2017) and Su et al. (2020a) describe a procedure for data-driven estimator selection, which is used to tune the
built-in hyperparameters of their own estimators. However, their methods need to estimate the bias (or its loose upper bound
as a proxy) of the estimator as a subroutine, which is as difficult as OPE itself. Su et al. (2020b) develop a generic data-driven
method for estimator selection for OPE called SLOPE, which is based on Lepski’s principle (Lepski & Spokoiny, 1997) and
does not need a bias estimator. Tucker & Lee (2021) improve the theoretical analysis of Su et al. (2020b), resulting in a
refined procedure called SLOPE++.

Given a finite set of estimators {V̂m}Mm=1, which is often constructed by varying the value of hyperparameters, the estimator
selection problem aims at identifying the estimator that minimizes some notion of estimation error such as the following
absolute error with respect to a given target policy π.

m∗ := arg min
m∈[M ]

∣∣∣V (π)− V̂m(π;D)
∣∣∣ ,

where D is a given logged bandit dataset.

For solving this selection problem, SLOPE++ requires the following monotonicity assumption (SLOPE requires a slightly
stronger assumption).

Assumption C.1. (Monotonicity)

1. Bias(V̂m) ≤ Bias(V̂m+1), ∀m ∈ [M − 1]

2. CNF(V̂m+1) ≤ CNF(V̂m), ∀m ∈ [M − 1]

where CNF(V̂ ) is a high probability bound on the deviation of V̂ , which requires that the following hold with a probability
at least 1− δ. ∣∣∣ED [V̂ (π;D)

]
− V̂ (π;D)

∣∣∣ ≤ CNF(V̂ ),

which we can generally bound with high confidence using techniques such as concentration inequalities.

Based on this assumption, Tucker & Lee (2021) derive the following universal bound.

Theorem C.2. (Theorem 1 of Tucker & Lee (2021)) Given δ > 0, high confidence bound CNF(V̂m) on the deviations, and
that we have ordered the candidate estimators such that CNF(V̂m+1) ≤ CNF(V̂m). Selecting the estimator as

m̂ := max
{
m :

∣∣∣V̂m − V̂j∣∣∣ ≤ CNF(m) + (
√

6− 1)CNF(j), j < m
}

(22)

ensures that with probability at least 1− δ,∣∣∣V̂m̂ − V̂m∗ ∣∣∣ ≤ (
√

6 + 1) min
m

(
max
j≤m

BIAS(j) + CNF(m)

)
.

Under Assumption C.1, the bound simplifies to∣∣∣V̂m̂ − V̂m∗ ∣∣∣ ≤ (
√

6 + 1) min
m

(BIAS(m) + CNF(m)) .

In contrast, when the set of estimators is not ordered with respect to CNF(·), we have a looser bound as below.∣∣∣V̂m̂ − V̂m∗ ∣∣∣ ≤ (
√

6 + 1) min
m

(
max
j≤m

BIAS(j) + max
k≤m

CNF(k)

)
.

Note that Tucker & Lee (2021) also provide the corresponding universal upper bound with respect to MSE in their Corollary
1.1.
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We build on the selection procedure given in Eq. (22) to implement data-driven action feature selection. Specifically, in our
case, the task is to identify which dimensions of the action embedding e we should use to minimize the MSE of the resulting
MIPS as follows.

min
E⊆V

Bias
(
V̂MIPS (π; E)

)2
+ VD

[
V̂MIPS

(
π;D, E

)]
where V := {E1, E2, . . . , Ek} is a set of available action features. Note that we make the dependence of MIPS on the action
embedding space E explicit in the above formulation.

As described in Theorems 3.5, 3.6, and 3.7, we should use as many dimensions as possible to reduce the bias, while we
should use as coarse information as possible to gain a large variance reduction. For identifying useful features to compute
the marginal importance weights, we construct a set of estimators {V̂MIPS (π;D, E)}E⊆V and simply apply Eq. (22). Note
that when the number of embedding dimensions is not small, the brute-force search over all possible combinations of
the embedding dimensions is not tractable. Thus, we sometime define the action embedding search space V via a greedy
procedure to make the embedding selection tractable.

D. Experiment Details and Additional Results
D.1. Baselines

Below, we define and describe the baseline estimators in detail.

Direct Method (DM) DM is defined as follows.

V̂DM(π;D, q̂) :=
1

n

n∑
i=1

Eπ(a|xi)[q̂(xi, a)] =
1

n

n∑
i=1

∑
a∈A

π(a|x) · q̂(xi, a),

where q̂(x, a) estimates q(x, a) based on logged bandit data. The accuracy of DM depends on the quality of q̂(x, a). If
q̂(x, a) is accurate, so is DM. However, if q̂(x, a) fails to estimate the expected reward accurately, the final estimator is no
longer consistent. As discussed in Appendix A, the misspecification issue is challenging, as it cannot be easily detected from
available data (Farajtabar et al., 2018; Voloshin et al., 2019). This is why DM is often described as a high bias estimator.

Doubly Robust (DR) (Dudı́k et al., 2014) DR is defined as follows.

V̂DR(π;D, q̂) :=
1

n

n∑
i=1

Eπ(a|xi)[q̂(xi, a)] + w(xi, ai)(ri − q̂(xi, ai)),

which combines DM and IPS in a way to reduce the variance. More specifically, DR utilizes q̂ as a control variate. If
the expected reward is correctly specified, DR is semiparametric efficient meaning that it achieves the minimum possible
asymptotic variance among regular estimators (Narita et al., 2019). A problem is that, if the expected reward function is
misspecified, this estimator can have a larger asymptotic MSE compared to IPS.

Switch Doubly Robust (Switch-DR) (Wang et al., 2017) Although DR generally reduces the variance of IPS and is also
minimax optimal (Wang et al., 2017), it can still suffer from the variance issue in practice, particularly when the importance
weights are large due to a weak overlap between target and logging policies. Switch-DR is introduced to further deal with
the variance issue and is defined as follows.

V̂SwitchDR(π;D, q̂, λ) :=
1

n

n∑
i=1

Eπ(a|xi)[q̂(xi, a)] + w(xi, ai)(ri − q̂(xi, ai))I{w(xi, ai) ≤ λ},

where I{·} is the indicator function and λ ≥ 0 is a hyperparameter. When τ = 0, Switch-DR becomes DM, while τ →∞
leads to DR. Switch-DR is also minimax optimal when λ is appropriately set (Wang et al., 2017).

More Robust Doubly Robust (Farajtabar et al., 2018) MRDR uses an expected reward estimator (q̂MRDR) de-
rived by minimizing the variance of the resulting estimator. This estimator is defined as V̂MRDR(π;D, q̂MRDR) :=
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V̂DR(π;D, q̂MRDR), where q̂MRDR is derived by minimizing the (empirical) variance objective: q̂MRDR ∈
arg minq̂∈Q Vn(V̂DR(π;D, q̂)), where Q is a function class for q̂. When Q is well-specified, then q̂MRDR = q. The
main point is that, even if Q is misspecified, MRDR is still expected to perform reasonably well, as the target function is the
resulting variance. To implement MRDR, we follow Farajtabar et al. (2018) and Su et al. (2020a), and derive q̂MRDR by
minimizing the weighted squared loss with respect to the reward prediction on logged data.

Doubly Robust with Optimistic Shrinkage (Su et al., 2020a) DRos is defined via minimizing a sharp bound of the
MSE and is defined as follows.

V̂DRos(π;D, q̂, λ) :=
1

n

n∑
i=1

Eπ(a|xi)[q̂(xi, a)] +
λw(xi, ai)

w(xi, ai)2 + λ
(ri − q̂(xi, ai)),

where λ ≥ 0 is a hyperparameter. When λ = 0, DRos is equal to DM, while λ→∞ makes DRos identical to DR. DRos is
aimed at improving the small sample performance of DR, but is indeed biased due to the weight shrinkage.

DR-λ (Metelli et al., 2021) DR-λ is a recent estimator building on a “smooth shrinkage” of the importance weights to
mitigate the heavy-tailed behavior of the previous estimators. This estimator is defined as follows.

V̂DR−λ(π;D, q̂) :=
1

n

n∑
i=1

Eπ(a|xi)[q̂(xi, a)] +
w(xi, ai)

1− λ+ λw(xi, ai)
(ri − q̂(xi, ai)),

where λ ∈ [0, 1] is a hyperparameter. Note that Metelli et al. (2021) define a more general weight, ((1− λ)w(x, a)s + λ)
1
s ,

with an additional hyperparameter s. The above instance is a special case with s = 1, which is the main proposal of Metelli
et al. (2021).

D.2. Additional Results on Synthetic Bandit Data

In this section, we explore two additional research questions regarding the estimators’ performance for different logging/target
policies and different levels of noise on the rewards. We demonstrate that MIPS works particularly better than other baselines
when the target and logging policies differ greatly and the reward is noisy. After discussing the two research questions, we
report detailed experimental results regarding the research questions addressed in the main text with additional baselines.

How does MIPS perform with varying logging and target policies? We compare the MSE, squared bias, and variance
of the estimators (DM, IPS, DR, MIPS, and MIPS with the true weights) with varying logging and target policies. We can
do this by varying the values of β0 and ε as described in Section 4.6

First, Figure 7 reports the results with varying logging policies (β0 ∈ {−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3}) and with a
near-optimal/near-deterministic target policy defined by ε = 0.1 (fixed). A large negative value of β0 leads to a worse
logging policy, meaning that it creates a large discrepancy between logging and target policies in this setup. The left
column of Figure 7 demonstrates that the MSEs of the estimators generally become larger for larger negative values of β0 as
expected. Most notably, the MSEs of IPS and DR blow up for β0 = −3,−2 due to their inflated variance as suggested in
the right column of the same figure. On the other hand, MIPS and MIPS (true) work robustly for a range of logging policies,
suggesting the strong variance reduction for the case with a large discrepancy between policies. DM also suffers from a
larger discrepancy between logging and target policies due to its increased bias caused by the extrapolation error issue.

Next, Figure 8 shows the results with varying target policies (ε = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}) and with a logging policy
slightly worse than uniform random defined by β0 = −1 (fixed). A larger value of ε introduces a larger entropy for the
target policy, making it closer to the logging policy in this setup (an extreme case with ε = 1.0 produces a uniform random
target policy). On the other hand, ε = 0 produces the optimal, deterministic target policy, which makes OPE harder given
β0 = −1. The left column of Figure 8 suggests that all estimators perform worse for smaller values of ε as expected. IPS
and DR perform worse as their variance increases with decreasing ε, while DM performs worse as it produces larger bias.
The variance of MIPS also increases with decreasing ε, but it is often much smaller than those of IPS and DR. A little bias
of MIPS with small values of ε is due to the estimation error of the importance weights. Note that, for the uniform random
target policy (ε = 1.0), all estimators are very accurate and there is no significant difference among the estimators.

6Note that we set β0 = −1 and ε = 0.1 for all synthetic results in the main text.
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MSE Squared Bias Variance

Figure 7. MSE, Squared Bias, and Variance with varying logging policies (β0)

Figure 8. MSE, Squared Bias, and Variance with varying evaluation policies (ε)

Figure 9. MSE, Squared Bias, and Variance with varying noise levels (σ)

Note: We set n = 3, 000 and |A| = 250. For Figure 7, we fix ε = 0.1, σ = 2, for Figure 8, we fix β0 = −1, σ = 2, and for Figure 9, we
fix ε = 0.1, beta0 = −1. The results are averaged over 100 different sets of synthetic logged data replicated with different random seeds.
The shaded regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap. The y-axis of MSE and Variance
plots (the left and right columns) is reported on log-scale.

How does MIPS perform with varying noise levels? Next, we explore how the level of noise on the rewards affects
the comparison of the estimators. To this end, we vary the noise level σ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} where σ
is the standard deviation of the Gaussian noise, i.e., r ∼ N (q(x, a), σ2). As stated in the main text, the variance of IPS
grows when the reward is noisy. Theorem 3.6 also implies that the variance reduction of MIPS becomes more appealing
with the noisy rewards. Figure 9 empirically supports these claims. Specifically, IPS significantly exacerbates its MSE
from 0.78 (when σ = 0.5) to 2.73 (when σ = 4.0). MIPS also struggles with noisy rewards, but the improvement of MIPS
compared to IPS/DR becomes larger with the added noise. When the noise level is small (σ = 0.5), MSE(V̂IPS)

MSE(V̂MIPS)
= 8.74,

while MSE(V̂IPS)

MSE(V̂MIPS)
= 13.30 when the noise is large (σ = 4.0). Different from IPS, DR, and MIPS, DM is not affected by the

noise level and becomes increasingly better than IPS and DR in noisy environments. On the other hand, MIPS achieves
much smaller MSE than DM even with noisy rewards.

Comparisons with additional baselines across additional experimental conditions. We include additional baselines
(Switch-DR, MRDR, DRos, and DR-λ) described in Appendix D.1 to the empirical evaluations. Their built-in hyperpa-
rameters are tuned with SLOPE++ proposed by Tucker & Lee (2021), which slightly improves the original SLOPE of Su
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et al. (2020b). We use implementations of these advanced estimators provided by OBP (version 0.5.2). We evaluate the
four research questions addressed in the main text with six different pairs of (β0, ε). Figures 10-13 report the results with
β0 = −1 and ε = 0.1. Figures 14-17 report the results with β0 = −1 and ε = 0.9. Figures 18-21 report the results with
β0 = 0 and ε = 0.1. Figures 22-25 report the results with β0 = 0 and ε = 0.9. Figures 26-29 report the results with β0 = 1
and ε = 0.1. Figures 30-33 report the results with β0 = 1 and ε = 0.9.

In general, we observe results similar to those reported in the main text, especially for near-deterministic target policy
ε = 0.1. Specifically, MIPS works better than all existing estimators, including the advanced ones, in a range of situations,
in particular for small data and large action spaces. This result suggests that even the recent state-of-the-art estimators
fail to deal with large action spaces. When the target policy is near-uniform with ε = 0.9, the logging and target policies
become similar, and as a result, all estimators behave similarly. Regarding the additional baselines, we find that MRDR
works similarly to IPS and DR, while Switch-DR, DRos, and DR-λ work similarly to DM. Specifically, MRDR suffers from
its growing variance with a growing number of actions. Switch-DR, DRos, and DR-λ fail to improve their variance with the
growing sample size and become worse than IPS and DR in large sample regimes. This observation suggests that SLOPE++
avoids large importance weights and favors low variance, but highly biased estimators in our setup.
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MSE Squared Bias Variance

Figure 10. MSE, Squared Bias, and Variance with varying number of actions

Figure 11. MSE, Squared Bias, and Variance with varying sample size

Figure 12. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Figure 13. MSE, Squared Bias, and Variance of MIPS with or without data-driven action embedding selection (using SLOPE)

Note: We set β0 = −1 and ε = 0.1, which produce logging policy slightly worse than uniform random and
near-optimal/near-deterministic evaluation policy. The results are averaged over 100 different sets of synthetic logged data replicated
with different random seeds. The shaded regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap. The
y-axis of MSE and Variance plots (the left and right columns) is reported on log-scale.
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MSE Squared Bias Variance

Figure 14. MSE, Squared Bias, and Variance with varying number of actions

Figure 15. MSE, Squared Bias, and Variance with varying sample size

Figure 16. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Figure 17. MSE, Squared Bias, and Variance of MIPS with or without data-driven action embedding selection (using SLOPE)

Note: We set β0 = −1 and ε = 0.9, which produce logging policy slightly worse than uniform random and near-uniform
evaluation policy. The results are averaged over 100 different sets of synthetic logged data replicated with different random seeds. The
shaded regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap. The y-axis of MSE and Variance plots
(the left and right columns) is reported on log-scale.
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MSE Squared Bias Variance

Figure 18. MSE, Squared Bias, and Variance with varying number of actions

Figure 19. MSE, Squared Bias, and Variance with varying sample size

Figure 20. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Figure 21. MSE, Squared Bias, and Variance of MIPS with or without data-driven action embedding selection (using SLOPE)

Note: We set β0 = 0 and ε = 0.1, which produce uniform random logging policy and near-optimal/near-deterministic evaluation
policy. The results are averaged over 100 different sets of synthetic logged data replicated with different random seeds. The shaded
regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap. The y-axis of MSE and Variance plots (the left
and right columns) is reported on log-scale.
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MSE Squared Bias Variance

Figure 22. MSE, Squared Bias, and Variance with varying number of actions

Figure 23. MSE, Squared Bias, and Variance with varying sample size

Figure 24. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Figure 25. MSE, Squared Bias, and Variance of MIPS with or without data-driven action embedding selection (using SLOPE)

Note: We set β0 = 0 and ε = 0.9, which produce uniform random logging policy and near-uniform evaluation policy. The results
are averaged over 100 different sets of synthetic logged data replicated with different random seeds. The shaded regions in the MSE plots
represent the 95% confidence intervals estimated with bootstrap. The y-axis of MSE and Variance plots (the left and right columns) is
reported on log-scale.
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MSE Squared Bias Variance

Figure 26. MSE, Squared Bias, and Variance with varying number of actions

Figure 27. MSE, Squared Bias, and Variance with varying sample size

Figure 28. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Figure 29. MSE, Squared Bias, and Variance of MIPS with or without data-driven action embedding selection (using SLOPE)

Note: We set β0 = 1 and ε = 0.1, which produce logging policy slightly better than uniform random and
near-optimal/near-deterministic evaluation policy. The results are averaged over 100 different sets of synthetic logged data replicated
with different random seeds. The shaded regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap. The
y-axis of MSE and Variance plots (the left and right columns) is reported on log-scale.
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MSE Squared Bias Variance

Figure 30. MSE, Squared Bias, and Variance with varying number of actions

Figure 31. MSE, Squared Bias, and Variance with varying sample size

Figure 32. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Figure 33. MSE, Squared Bias, and Variance of MIPS with or without data-driven action embedding selection (using SLOPE)

Note: We set β0 = 1 and ε = 0.9, which produce logging policy slightly better than uniform random and near-uniform evaluation
policy. The results are averaged over 100 different sets of synthetic logged data replicated with different random seeds. The shaded
regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap. The y-axis of MSE and Variance plots (the left
and right columns) is reported on log-scale.
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Algorithm 1 Experimental Procedure to Evaluate an OPE Estimator with Real-World Bandit Data

Input: an estimator to be evaluated V̂ , target policy and corresponding logged data (π,D), logging policy and corresponding
logged bandit data (π0,D0), sample size in OPE n, number of random seeds T

Output: empirical CDF of the squared error (F̂Z)
1: Z ← ∅ (initialize set of results)
2: for t = 1, 2, . . . , T do
3: D∗0,t ← Bootstrap(D0;n) // randomly sample size n of bootstrapped samples

4: z′ ←
(
Von(π;D)− V̂ (π;D∗0,t)

)2
/
(
Von(π;D)− V̂IPS(π;D∗0,t)

)2
// calculate the relative SE of V̂ w.r.t IPS

5: Z ← Z ∪ {z′} // store the result

6: end for
7: Estimate CDF of relative SE (FZ) based on Z (Eq. 23)

Figure 34. CDF of squared errors relative to IPS with different sample sizes (From left to right, n = 10000, 50000, 500000). CDFs are
estimated with 150 different sets of bootstrapped logged bandit data. Note that the x-axis is reported on log-scale.

D.3. Experimental Procedure to Evaluate OPE Estimators on Real-World Bandit Data

Following Saito et al. (2020; 2021), we empirically evaluate the accuracy of the estimators by leveraging two sources of
logged bandit data collected by running two different policies denoted as π (regarded as target policy) and π0 (regarded as
logging policy). We let D denote a logged bandit dataset collected by π and D0 denote that collected by π0. We then apply
the following procedure to evaluate the accuracy of an OPE estimator V̂ .

1. Perform bootstrap sampling on D0 and construct D∗0 := {(x∗i , a∗i , r∗i )}ni=1, which consists of size n of independently
resampled data with replacement.

2. Estimate the policy value of π usingD∗0 and OPE estimator V̂ . We represent a policy value estimated by V̂ as V̂ (π;D∗0).

3. Evaluate the estimation accuracy of V̂ with the following relative squared error w.r.t IPS (rel-SE):

rel-SE(V̂ ;D∗0) :=
(
Von(π;D)− V̂ (π;D∗0)

)2
/
(
Von(π;D)− V̂IPS(π;D∗0)

)2
,

where V̂on(π;D) := |D|−1
∑

(·,·,rj)∈D rj is the Monte-Carlo estimate of V (π) based on on-policy data D.

4. Repeat the above process T times with different random seeds, and estimate the CDF of the relative SE as follows.

F̂Z(z) :=
1

T

T∑
t=1

I
{

rel-SEt(V̂ ;D∗0,t) ≤ z
}
, (23)

where rel-SE(V̂ ;D∗0,t) is the relative SE of V̂ computed with the t-th bootstrapped samples.

Algorithm 1 describes this experimental protocol for evaluating OPE estimators in detail. Figure 34 reports the results
with real bandit data for varying numbers of logged data (n = 10000, 50000, 500000). Note that we use Random Forest
implemented in scikit-learn to obtain q̂(x, e) for the model-dependent estimators. We also use Naive Bayes to estimate
π̂0(a|x, e) for MIPS.
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Note that we use OBD’s “ALL” campaign, because it has the largest number of actions among three available campaigns.
We also regard the same action presented at a different position in a recommendation interface as different actions. As OBD
has 80 unique actions and 3 different positions in its recommendation interface, the resulting action space has the cardinality
of 80× 3 = 240.


