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ABSTRACT
Counterfactual estimators enable the use of existing log data to
estimate how some new target policy would have performed, if it
had been used instead of the policy that logged the data. We say that
those estimators work "off-policy", since the policy that logged the
data is different from the target policy. In this way, counterfactual
estimators enable Off-policy Evaluation (OPE) akin to an unbiased
offline A/B test, as well as learning new decision-making policies
through Off-policy Learning (OPL). The goal of this tutorial is to
summarize Foundations, Implementations, and Recent Advances of
OPE and OPL (OPE/OPL), with applications in recommendation,
search, and an ever growing range of interactive systems. Specifi-
cally, we will introduce the fundamentals of OPE/OPL and provide
theoretical and empirical comparisons of conventional methods.
Then, we will cover emerging practical challenges such as how to
handle large action spaces, distributional shift, and hyper-parameter
tuning. We will then present Open Bandit Pipeline, an open-source
Python software for OPE/OPL to better enable new research and
applications. We will conclude the tutorial with future directions.

CCS CONCEPTS
• Computing methodologies→ Batch learning; • Theory of
computation → Sequential decision making.
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1 TUTORIAL OUTLINE
This tutorial consists of the following contents (total 3 hours).

(1) Introduction to OPE/OPL (Thorstem Joachims; 30min):
We will introduce conventional formulation of OPE and
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how it helps improve interactive systems quickly and safely.
We also introduce basic estimators in OPE including Direct
Method (DM) and Inverse Propensity Score (IPS) weight-
ing with some empirical illustrations to highlight their bias-
variance trade-off.

(2) Bias-Variance Control (Yuta Saito; 40min)
This section summarizes a wide range of existing estima-
tors in OPE including Self-Normalized IPS [17], Doubly Ro-
bust [2], Switch [20], and Doubly Robust with Shrinkage [14].
These estimators aim at achieving a better bais-variance
trade-off compared to DM and IPS. We will provide compre-
hensive comparisons of these estimators from both theoreti-
cal and empirical perspectives.

(3) Recent Advances (Yuta Saito; 40min)
This section will cover recent related methods to handle
emerging practical challenges such as OPE of ranking poli-
cies [4, 5, 7, 9], large-scale applications [6, 12], deficient sup-
port [8], multiple loggers [1, 3], and hyper-parameter tuning
for OPE [13–15, 19]. These challenges are closely related to
real-world applications such as recommender and retrieval
systems where the estimators have to deal with many num-
ber of actions and non-stationary dynamics.

(4) Off-Policy Learning (Thorsten Joachims; 40min)
This section will cover the fundamental methods for OPL [16,
17] where we aim at training a new decision-making policy
using only the logged bandit data.

(5) Implementations (Yuta Saito; 20min)
This section will introduce Open Bandit Pipeline1 [10], an
open-source Python package for OPE/OPL, and demonstrate
how it helps us implement OPE/OPL for both research and
practical purposes.

(6) Conclusions and QAs (Both Presenters; 10min)
This section will conclude the tutorial by summarizing the
previous sections and presenting remaining research chal-
lenges of the area. There will also be a live QA session.

The learning outcomes are to enable the participants:
(1) to know fundamental concepts and methods of OPE/OPL
(2) to be familiar with recent advances to address practical chal-

lenges such as large action spaces and parameter tuning
(3) to understand how to implement OPE/OPL
(4) to be aware of remaining challenges and opportunities in

the relevant field
Note that all materials, including slides and demo code, will be

available during and after the tutorial on our tutorial website.
1https://github.com/st-tech/zr-obp
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2 TARGETED AUDIENCE
This tutorial is aimed at an audience with intermediate experience
in machine learning, data mining, or recommender systems who
are interested in using OPE/OPL methods in their research and
applications. Participants are expected to have basic knowledge of
machine learning, probability theory, and statistics.

3 RELATED TUTORIALS
We presented a similar tutorial at RecSys 2021 in Amsterdam,
Netherlands titled “Counterfactual Learning and Evaluation for
Recommender Systems: Foundations, Implementations, and Recent
Advances” [11].2. Our new tutorial is based on this previous ver-
sion, but additionally highlights the emerging topic of OPE/OPL
for large-scale applications.

We also want to highlight a related tutorial presented remotely
at KDD 2021 titled “Causal Inference and Machine Learning in Prac-
tice with EconML and CausalML" [18]3, which focuses on recent
advances and real-world use cases of treatment effect prediction.
The technical aspect of this tutorial is closely related to ours, but
our focus is rather on evaluating and training decision-making
policies using only logged bandit data, which is a goal substantially
different from predicting the heterogeneous causal effect of often
binary treatments.

4 PRESENTER BIO
Yuta Saito (ys552@cornell.edu). is a Ph.D. student in the Depart-
ment of Computer Science at Cornell University, advised by Prof.
Thorsten Joachims. His current research focuses on OPE of bandit
algorithms and fairness in ranking. Some of his recent work has
been published at top-tier conferences, including ICML, NeurIPS,
KDD, RecSys, and WSDM. He has also co-lectured a tutorial related
to counterfactual inference at RecSys 2021.

Thorsten Joachims (tj@cs.cornell.edu). is a Professor in the De-
partment of Computer Science and in the Department of Informa-
tion Science at Cornell University, and he is an Amazon Scholar.
His research interests center on the synthesis of theory and system
building in machine learning, with applications in information re-
trieval and recommendation. His past research focused on support
vector machines, learning to rank, learning with preferences, and
learning from implicit feedback, text classification, and structured
output prediction. Working with his students and collaborators,
his papers won 10 Best Paper Awards and 4 Test-of-Time Awards.
He is also an ACM Fellow, AAAI Fellow, KDD Innovations Award
recipient, and member of the SIGIR Academy.
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