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Abstract
We study offline recommender learning from ex-
plicit rating feedback in the presence of selection
bias. A current promising solution for the bias is
the inverse propensity score (IPS ) estimation. How-
ever, the performance of existing propensity-based
methods can suffer significantly from the propen-
sity estimation bias. In fact, most of the previous
IPS-based methods require some amount of missing-
completely-at-random (MCAR ) data to accurately
estimate the propensity. This leads to a critical self-
contradiction; IPS is ineffective without MCAR
data, even though it originally aims to learn rec-
ommenders from only missing-not-at-random feed-
back. To resolve this propensity contradiction, we
derive a propensity-independent generalization er-
ror bound and propose a novel algorithm to min-
imize the theoretical bound via adversarial learn-
ing. Our theory and algorithm do not require a
propensity estimation procedure, thereby leading
to a well-performing rating predictor without the
true propensity information. Extensive experiments
demonstrate that the proposed approach is superior
to a range of existing methods both in rating predic-
tion and ranking metrics in practical settings without
MCAR data.

1 Introduction
In industrial recommender systems, it is essential to ob-
tain a well-performing rating predictor from sparse rating
feedback to recommend items relevant to users. An im-
portant challenge is that most of the missing mechanisms
of real-world explicit rating data are missing-not-at-random
(MNAR ) [Marlin and Zemel, 2009; Schnabel et al., 2016;
Wang et al., 2019; Chen et al., 2020]. There are two main
causes behind the MNAR mechanism. The first is the past
recommendation policy. Suppose that we rely on a policy that
recommends popular items with high probabilities. Then,
the observed ratings under that policy include more data
of popular items [Bonner and Vasile, 2018]. The second
is self-selection by users. It is well-known that the users
tend to rate items for which they exhibit positive prefer-
ences, and the ratings for items with negative preferences

are more likely to be missing [Marlin and Zemel, 2009;
Schnabel et al., 2016].

1.1 Open Problem: Propensity Contradiction
Selection bias makes it difficult to learn rating predictors,
as naive methods typically result in suboptimal and biased
recommendations with MNAR data [Schnabel et al., 2016;
Steck, 2010; Wang et al., 2019]. One of the most established
solutions to this problem is the propensity-based approach. It
defines the probability of each feedback being observed as a
propensity score and obtains an unbiased estimator for the true
metric via inverse propensity weighting [Liang et al., 2016;
Schnabel et al., 2016; Wang et al., 2019]. In general, un-
biasedness of IPS is desirable, however, it is valid only
when the true propensity score is available. Previous stud-
ies utilize some amount of missing-completely-at-random
(MCAR ) test data to estimate the propensity score and en-
sure their empirical performance [Schnabel et al., 2016;
Wang et al., 2019]. In most real-world recommender sys-
tems, however, the true propensity score is unknown, and
MCAR data are unavailable as well, resulting in a severe bias
in the estimation of the loss function of interest. Thus, there
remains a critical contradiction: the performance of the IPS
variants relies heavily on mostly inaccessible MCAR data,
although they originally aim at training recommenders using
only MNAR data.

Two previous methods tackle the challenge of those
propensity-based methods. The first one is causal embeddings
(CausE) [Bonner and Vasile, 2018]. It introduces a domain
regularization term to address the bias. However, CausE re-
quires some amount of MCAR data by its design; it cannot be
generalized to a realistic setting with only MNAR training data.
Moreover, its domain regularization technique is a heuristic ap-
proach and lacks a theoretical guarantee. The other method is
to use 1-bit matrix completion (1BitMC) [Ma and Chen, 2019]
to estimate propensity scores using only MNAR training data,
along with a theoretical guarantee. However, the problem is
that these methods presuppose the debiasing procedure with
inverse propensity weighting and thus cannot be used when
there is a user–item pair with zero observed probability. Fur-
thermore, the experiments on 1BitMC were conducted using
only extremely small datasets (Coat and MovieLens 100k) and
prediction accuracy measures (MSE); accordingly, its perfor-
mance on moderate size benchmark datasets (e.g., Yahoo! R3



[Mnih and Salakhutdinov, 2008]) and on a ranking task remain
unknown.

1.2 Contributions
To overcome the limitations of the existing methods, we estab-
lish a new theory for offline recommender learning inspired
by the theoretical framework of unsupervised domain adap-
tation (UDA) [Ben-David et al., 2010]. UDA aims to obtain
a good predictor in settings where the feature distributions
between the training and test sets are different. To this end,
UDA utilizes distance metrics that measure the dissimilar-
ity between probability distributions and does not depend on
the propensity score [Ganin et al., 2016; Saito et al., 2017;
Saito, 2020a]. Thus, the framework is usable even when the
true propensity score is unknown and is expected to allevi-
ate the issues caused by the propensity estimation bias in the
absence of MCAR data. Moreover, the method is valid even
when there is a user–item pair with zero observed probability.

To figure out a solution to the propensity contradiction, we
first define a novel discrepancy metric to quantify the simi-
larity between two missing mechanisms of rating feedback.
Building on our discrepancy measure, we derive a propensity
independent generalization error bound for the loss function
of interest. We further propose domain adversarial matrix
factorization (DAMF), which minimizes the derived theoreti-
cal bound in an adversarial manner. Our theoretical bound and
algorithm are independent of the propensity score and thus
address the contradiction of the previous propensity-based
solutions. Finally, we conduct extensive experiments using
public real-world datasets. In particular, we demonstrate that
the proposed approach outperforms existing propensity-based
methods in terms of rating prediction and ranking performance
under a realistic situation where the true propensity score is
inaccessible.

2 Preliminaries
Let u ∈ [m] be a user and i ∈ [n] be an item in a recommender
system. We also define D := [m]× [n] as the set of all user–
item pairs. Let R ∈ Rm×n denote a (deterministic) true rating
matrix, where each entry Ru,i represents the real-valued true
rating of user u for item i.

Our goal is to develop an algorithm to obtain a better pre-
dicted rating matrix (or a hypothesis) R̂, where each entry
R̂u,i denotes a predicted rating value for (u, i). To this end,
we formally define the ideal loss function of interest, which
should ideally be minimized to obtain a rating predictor as
follows:

Lℓ
ideal(R̂) :=

1

mn

∑
(u,i)∈D

ℓ(Ru,i, R̂u,i), (1)

where ℓ(·, ·) : R×R → [0,∆] is a loss function bounded by
∆. For example, when ℓ(x, y) = (x− y)2, Eq. (1) represents
the mean-squared-error (MSE).

In real-life recommender systems, one cannot directly cal-
culate the ideal loss function, as most rating data are missing
in nature. To precisely formulate this missing mechanism,
we introduce two additional matrices. The first one is the

propensity matrix, denoted as P ∈ P , where P represents the
space of probability distributions over D. Each of its entries
Pu,i ∈ [0, 1] is the propensity score of (u, i), and it represents
the probability of the rating feedback being observed. Next,
let O ∈ {0, 1}m×n be an observation matrix where each entry
Ou,i ∈ {0, 1} is a Bernoulli random variable with its expec-
tation E[Ou,i] = Pu,i. If Ou,i = 1, the rating of the pair is
observed, otherwise, it is unobserved. Finally, we use O ∼ P
when the entries of O are the realizations of Bernoulli distribu-
tions defined by the entries of P . For simplicity and without
loss of generality, we assume that M :=

∑
(u,i)∈D Ou,i here-

inafter.

2.1 Existing Methods
In our formulation, it is essential to approximate the ideal loss
function using only observable feedback. Here, we summarize
the existing methods to estimate the ideal loss function and
discuss their limitations.

Naive Estimator. Given a set of observed rating feedback,
the most basic estimator for the ideal loss is the naive estimator,
which is defined as follows:

L̂ℓ
naive(R̂;O) :=

1

M

∑
(u,i)∈D

Ou,i · ℓ(Ru,i, R̂u,i). (2)

The naive estimator simply averages the loss of user-item
pairs with the observed rating feedback (i.e.,Ou,i = 1). This is
valid when the missing mechanism is MCAR1, as it is unbiased
against the ideal loss function with MCAR data [Schnabel et
al., 2016]. However, several previous studies indicate that this
estimator exhibits a bias under general MNAR settings (i.e.,
E[L̂ℓ

naive] ̸= Lℓ
ideal for some R̂). This means that the naive

estimator does not converge to the ideal loss, even with infinite
data. Therefore, one should use an estimator that addresses the
bias as an alternative to the naive one [Schnabel et al., 2016].

Inverse Propensity Score (IPS) Estimator. To improve the
naive estimator, several previous studies apply the IPS estima-
tion to alleviate the bias of MNAR rating feedback [Liang
et al., 2016; Schnabel et al., 2016; Saito et al., 2020c;
Saito, 2020c; Saito et al., 2021]. In causal inference, propen-
sity scoring estimators are widely used to estimate the causal
effects of a treatment from observational data [Imbens and
Rubin, 2015]. In our formulation, we can derive an unbiased
estimator for the loss function of interest by using the true
propensity score as follows:

L̂ℓ
IPS(R̂;O) :=

1

mn

∑
(u,i)∈D

Ou,i ·
ℓ(Ru,i, R̂u,i)

Pu,i
. (3)

This estimator is unbiased for the ideal loss (i.e., E[L̂ℓ
IPS ] =

Lℓ
ideal for any R̂) and is more desirable than the naive estima-

tor in terms of bias. However, its unbiasedness is ensured only
when the true propensity score is available, and it can have

1A missing mechanism is said to be MCAR if the propenisty
score is constant, i.e., Pu,i = C, ∀(u, i) ∈ D. Ensuring that the data
is MCAR is extremely difficult, because the users’ self-selection as
to which items they provide rating feedback is out of our control.



a bias with an inaccurate propensity estimator (see Lemma
5.1 of Schnabel et al. [Schnabel et al., 2016]). The bias of
IPS can arise in most real-world recommender systems, be-
cause the missing mechanism of rating feedback can depend
on user self-selection, which cannot be controlled by ana-
lysts and is difficult to estimate [Marlin and Zemel, 2009;
Schnabel et al., 2016]. Indeed, most previous studies estimate
the propensity score by using some amount of MCAR test
data to ensure empirical performance [Schnabel et al., 2016;
Wang et al., 2019]. However, this is infeasible owing to the
costly annotation process [Joachims et al., 2017]. In addi-
tion, this method is valid only when the ratings for some
user–item pairs are observed with non-zero probabilities (i.e.,
Pu,i ∈ (0, 1],∀(u, i) ∈ D), which is a criterion difficult to
verify in practice [Ma and Chen, 2019]. Therefore, we explore
a theory and algorithm independent of the propensity score
and MCAR data, aiming to alleviate the concurrent issues of
the propensity-based methods.
Doubly Robust (DR) Estimator. The DR estimator utilizes
the error imputation model and propensity score to decrease
the variance of the IPS approach. MF-DR [Wang et al., 2019]
optimizes the following DR estimator of the ideal loss.

L̂ℓ
DR(R̂;O)

:=
1

mn

∑
(u,i)∈D

{
ℓ̂u,i +Ou,i

ℓ(Ru,i, R̂u,i)− ℓ̂u,i
Pu,i

}
, (4)

where ℓ̂u,i is the imputation model, which estimates
ℓ(Ru,i, R̂u,i). As discussed in [Wang et al., 2019], this es-
timator satisfies the unbiasedness with the true propensity (i.e.,
E[L̂ℓ

DR] = Lℓ
ideal) and often achieves a tighter estimation

error bound compared to IPS. MF-DR obtains the final predic-
tion (R̂) and the imputation model simultaneously via a joint
learning procedure.

However, the proposed joint learning algorithm still requires
a pre-estimated propensity score [Wang et al., 2019]. Further-
more, the estimation performance of the DR estimator is sig-
nificantly degraded when the error imputation model and the
propensity model are both misspecified [Dudı́k et al., 2011].
In fact, in the empirical evaluations of [Wang et al., 2019],
MCAR test data are used to estimate the propensity score.
In the experiments, we validate the performance of the DR
estimator in a more practical setting where only MNAR data
are available (without any MCAR data).
Causal Embeddings (CausE) The work most closely re-
lated to ours is [Bonner and Vasile, 2018], which proposed
CausE, a domain adaptation-inspired method to address the
selection bias in rating feedback. The loss function of CausE
is given as follows:

L̂ℓ
CausE(R̂MCAR, R̂MNAR;OMCAR,OMNAR)

:= L̂ℓ
naive(R̂MCAR;OMCAR)

+ L̂ℓ
naive(R̂MNAR;OMNAR)

+ β · Ωdomain(R̂MCAR, R̂MNAR), (5)
where β ≥ 0 is a trade-off hyper-parameter. Two predic-
tion matrices (R̂MCAR and R̂MNAR) are for the MCAR and

MNAR data, respectively, where R̂MNAR is used to make
the final predictions. The last term represents the regular-
izer between tasks and penalizes the divergence between the
predictions for the MCAR and MNAR data.

This method empirically outperforms propensity-based
methods in a binary rating feedback setting [Bonner and Vasile,
2018]. A problem is that this algorithm requires some MCAR
data, which are generally unavailable. Moreover, it uses the
idea of domain adaptation in a heuristic manner by myopi-
cally adding Ωdomain(·); there is no theoretical guarantee for
its loss function. Therefore, we explore an algorithm that is
preferable to CausE in the following ways: (i) Our algorithm
does not use any MCAR data during training, and thus is feasi-
ble in a realistic situation having no MCAR training data, (ii)
Our proposed method is theoretically refined in the sense that
it minimizes the propensity-independent upper bound of the
ideal loss function.

3 Proposed Framework and Algorithm
This section derives a propensity-independent generalization
error bound for the ideal loss and an algorithm to minimize
the bound using only MNAR data.

3.1 Theoretical Bound
First, we define a discrepancy measure to quantify the similar-
ity between two different propensity matrices.

Definition 1. (Propensity Matrix Divergence (PMD)) Let H
be a set of real-valued predicted rating matrices and R̂ ∈ H
be a specific prediction. The PMD between any two given
propensity matrices P and P ′ is defined as follows:

ψR̂,H
(
P ,P ′) := sup

R̂
′∈H

{Lℓ(R̂, R̂
′
;P )− Lℓ(R̂, R̂

′
;P ′)},

where Lℓ(R̂, R̂
′
;P ) := EO∼P [L̂ℓ

naive(R̂, R̂
′
;O)] =

1
M

∑
(u,i)∈D Pu,i · ℓ(R̂u,i, R̂

′
u,i).

Note that the PMD is well defined because ψR̂,H(P ,P ) =

0,∀P ∈ P , and it satisfies nonnegativity and subadditivity.
Moreover, it is independent of the true rating matrices and can
be calculated for any given pair of propensity matrices without
true rating information.

We now use ψR̂,H and derive a propensity-independent
generalization error bound for the ideal loss function.2

Theorem 1. (Propensity Independent Generalization Error
Bound) Suppose two observation matrices with MCAR and
MNAR mechanisms (OMCAR ∼ PMCAR and OMNAR ∼
PMNAR) are given. For any prediction matrix R̂ ∈ H and

2Note that the theoretical bounds of all existing studies depend
on the cardinality of the hypothesis space |H| [Schnabel et al., 2016;
Wang et al., 2019]. This is unrealistic, as |H| is infinite in almost all
cases (as the parameter space is continuous). Under a realistic setting
with infinite H, therefore, the existing analysis becomes invalid. Thus,
we use the Rademacher complexity to consider a realistic situation
with infinite hypothesis spaces.



Algorithm 1 Domain Adversarial Matrix Factorization
Input: MNAR observation matrix OMNAR; set of user-item

pairs D; trade-off parameter β; regularization parameter
λ; batch size B; number of steps k

Output: learnt prediction matrix R̂ = UV ⊤

1: Randomly initialize U , V , U ′, and V ′

2: repeat
3: Sample mini-batch data of size B from OMNAR

4: for 1, . . . , k do
5: Update U and V by gradient descent according to

Eq. (9) with fixed R̂
∗
= U ′(V ′)⊤

6: end for
7: Uniformly sample user–item pairs of size T from D to

construct OMCAR

8: for 1, . . . , k do
9: Update U ′ and V ′ by gradient ascent according to

Eq. (8) with fixed R̂ = UV ⊤

10: end for
11: until convergence;

for any δ ∈ (0, 1), the following inequality holds with a prob-
ability of at least 1− δ:

Lℓ
ideal(R̂)

≤ L̂ℓ
naive(R̂;OMNAR) + ψR̂,H(OMCAR,OMNAR)

+ 2L(3RP ,M (H) + 2RP ′,M (H)) + 3∆

√
log(6/δ)

2M
,

(6)

where L is the Lipschitz constant of the loss function and
RP ,M (H) is the Rademacher complexity of H, which is de-
fined in Appendix A. See also Appendix A for the proof.

The theoretical bound consists of the following four fac-
tors: (i) Naive loss on MNAR data, (ii) Empirical PMD, (iii)
Complexity of the hypothesis class, (iv) Confidence term that
depends on δ. Note that (i) and (ii) can be optimized with
only observable data, and (iii) can be controlled by adding a
regularization term, as described in the next section. Morevoer
(iv) converges to zero as M increases. We will empirically
show that the bound is informative in the sense that optimizing
(i) and (ii) results in a desired value of the ideal loss function.

3.2 Algorithm
Here, we describe the proposed algorithm. Building on the
theoretical bound derived in Theorem 1, we aim at minimizing
the following objective:

min
R̂∈H

L̂ℓ
naive(R̂;OMNAR)︸ ︷︷ ︸

naive loss on MNAR training data

+ β · ψR̂,H(OMCAR,OMNAR)︸ ︷︷ ︸
discrepancy

+λ · Ω(R̂)︸ ︷︷ ︸
regularization

, (7)

where β ≥ 0 is the trade-off hyper-parameter between the
naive loss and discrepancy measure. Ω(·) is a regularization
function that penalizes the complexity of R̂, and λ ≥ 0 is

the regularization hyper-parameter. In addition, we can obtain
OMCAR by uniformly sampling unlabeled user–item pairs
from D. The objective in Eq. (7) builds on the two control-
lable terms of the theoretical bound in Eq. (6). Thus, it is
independent of the propensity score, and we need not esti-
mate the propensity score to optimize this objective. Note that
we add the regularization term to our objective to control the
complexity of the hypothesis class H, as it is impossible to
minimize the Rademacher complexity directly.

To solve Eq. (7), we empirically approximate ψR̂,H by
solving

max
R̂

′∈H
L̂ℓ
naive(R̂, R̂

′
;OMCAR)− L̂ℓ

naive(R̂, R̂
′
;OMNAR).

(8)

This optimization corresponds to accurately estimating PMD
from observable data.

Given the aforementioned details, Eq. (7) is now reduced
to:

min
R̂∈H

1

M

∑
(u,i):Ou,i=1

ℓ(Ru,i, R̂u,i)︸ ︷︷ ︸
empirical loss on MNAR training data

+ β · {L̂ℓ(R̂, R̂
∗
;OMCAR)− L̂ℓ(R̂, R̂

∗
;OMNAR)}︸ ︷︷ ︸

approximated PMD between MCAR and MNAR

+ λ · Ω(R̂)︸ ︷︷ ︸
regularization

, (9)

where R̂
∗

is the solution of Eq. (8).
Algorithm 1 describes the detailed procedure of our DAMF,

which is based on the matrix factorization (MF) model, where
a prediction matrix is defined as the product of user–item
latent factors U ∈ Rm×d and V ∈ Rn×d. Given that the
predictions are modelled by MF, a possible regularization is
Ω(R̂) := ∥U∥22 + ∥V ∥22, where ∥ · ∥2 is the L2 norm.

4 Experiments
This section empirically evaluates the proposed method on
public real-world datasets. Appendix B describes detailed
experimental settings such as dataset description, evaluation
metrics, and hyper-parameter tuning. Our code is available at
https://github.com/usaito/ijcai2022-adversarial-mf.

4.1 Experimental Setups
Datasets. We use Yahoo! R33 and Coat4, which separately
contain MNAR and MCAR datasets. We randomly selected
10% of the MNAR training set as the validation set, which is
used to perform hyper-parameter tuning.
Baseline Methods and Propensity Estimators. We com-
pare our proposed algorithm with the following baselines:

• MF [Koren et al., 2009], which optimizes its model pa-
rameters by minimizing the naive loss in Eq. (2) and does
not depend on the propensity score.

3http://webscope.sandbox.yahoo.com/
4https://www.cs.cornell.edu/˜schnabts/mnar/

https://github.com/usaito/ijcai2022-adversarial-mf
http://webscope.sandbox.yahoo.com/
https://www.cs.cornell.edu/~schnabts/mnar/


Datasets Methods MSE (± StdDev)

Yahoo! R3

MF 1.7343 (± 0.0309)
MF-IPS 1.7320 (± 0.0311)
MF-DR 1.7445 (± 0.0189)

DAMF (ours) 1.2787 (± 0.0126)
CausE 1.7390 (± 0.0283)

MF-IPS (true) 1.1281 (± 0.0161)
MF-DR (true) 1.0435 (± 0.0166)

Coat

MF 1.2166 (± 0.0007)
MF-IPS 1.2044 (± 0.0012)
MF-DR 1.2108 (± 0.0016)

DAMF (ours) 1.1371 (± 0.0025)
CausE 1.2801 (± 0.0043)

MF-IPS (true) 1.0675 (± 0.0043)
MF-DR (true) 1.0760 (± 0.0037)

Table 1: Rating Prediction Performance

Note: The bold font indicates the best performance in each metric
and dataset among methods using only MNAR data.

• MF-IPS [Schnabel et al., 2016], which optimizes its
model parameters by minimizing the IPS loss in Eq. (3).

• MF-DR [Wang et al., 2019], which optimizes its model
parameters by minimizing the DR loss in Eq. (4).

• CausE [Bonner and Vasile, 2018], which minimizes the
sum of the naive loss and the domain regularization term
Ωdomain(·), which measures the divergence between the
MNAR and MCAR data. To calculate its loss function,
we sample 5% of the MCAR test data. MCAR data are
in general unavailable in real-world settings, and thus we
report the results of CausE as a reference.

For MF-IPS and MF-DR, we use user propensity, item
propensity, user–item propensity, and 1BitMC [Ma and Chen,
2019] as the variants of the propensity estimator and report the
results with the best estimator for each dataset. Note that these
four propensity estimators (formally defined in the Appendix)
are usable in real-world recommender systems because they
use only MNAR data.

We also report the results of MF-IPS and MF-DR with the
true propensity score. We follow previous studies [Schnabel et
al., 2016; Wang et al., 2019] and calculate this true propensity
using 5% of the MCAR test data. Note that the true propensity
is unavailable in real-world situations, as it requires MCAR
explicit feedback. Therefore, we report the results of MF-IPS
and MF-DR with the true propensity score as a reference.

4.2 Results and Discussion
Here, we report and discuss the experimental results with
respect to four research questions (RQ1-RQ4). We run the
experiments 10 times with different random seeds and report
the averaged results in Tables 1-4.
RQ1. How well does the proposed algorithm perform on
the rating prediction task? We evaluate and compare the
prediction performance of DAMF and the baselines on Yahoo!
R3 and Coat. Table 3.2 provides the MSEs and their standard

deviations (StdDev). For Yahoo! R3, DAMF reveals the best
rating prediction performance among the methods using only
MNAR data. Specifically, it outperforms MF-IPS by 26.3%
and MF-DR by 26.7% in terms of MSE. For Coat, DAMF
outperforms MF-IPS by 5.59% and MF-DR by 6.08%, even
though the distributional shift of Coat is significantly smaller
than that of Yahoo! R3. Note that it is reasonable to assume
that there exists a user–item pair with zero observed probabil-
ity on Coat. This is because the training set was collected via
workers’ self-selection, and male workers did not provide the
ratings of women’s coats and vice versa. Thus, the results also
suggest the stability and adaptability of the proposed method
to the data with a user–item pair with Pu,i = 0. In contrast,
the performance of the propensity-based methods on Coat is
not theoretically grounded, as the training and test sets may
not overlap.

RQ2. How do propensity-based methods perform with differ-
ent propensity estimators? Here, we evaluate the sensitivity
of MF-IPS and MF-DR to the choice of the propensity esti-
mator. First, consistent with previous studies [Schnabel et al.,
2016; Wang et al., 2019], Table 3.2 shows that MF-IPS and
MF-DR with the true propensity exhibit better rating predic-
tion performance compared to the other methods. However,
Table 3.2 shows that they perform poorly with other propensity
estimators, including 1BitMC, and especially for Yahoo! R3.
In some cases, they even underperform MF, which is based on
the naive loss. Therefore, although propensity-based methods
are potentially high-performing with the true propensity, their
prediction performances are highly sensitive to the choice of
propensity estimator and negatively affected by the propen-
sity estimation bias. These empirical observations imply the
propensity contradiction of the previous methods.

RQ3. How well does the proposed algorithm perform on
the ranking task? Next, we test the ranking performance of
DAMF on Yahoo! R3 and Coat. Tables 3.2 and 3.2 describe
the ranking metrics computed on the MCAR test data.

For Yahoo! R3, DAMF demonstrates the best ranking per-
formance among all methods, including the methods with the
true propensity score. It outperforms MF-IPS by 3.39% and
MF-DR by 4.15%, MF-IPS (true) by 6.04%, and MF-DR (true)
by 3.61% in NDCG. The results suggest that DAMF is pow-
erful and useful for improving the recommendation quality
and user experience with only biased rating data. Moreover,
DAMF is the best in Coat, improving MF-IPS by 3.48%, MF-
DR by 1.94%, MF-IPS (true) by 1.10%, and MF-DR (true) by
1.32% in NDCG. These results demonstrate that the proposed
method works satisfactorily in the ranking task even when the
dataset size is small and the degree of bias is not significant.

RQ.4 Does adversarial learning really minimize the ideal
loss? Finally, we investigate the validity of minimizing the
propensity-independent upper bound in Eq. (6) as a solution to
minimize the ideal loss function in Eq. (1) using only MNAR
data. Figure 1 depicts the sum of the first two terms of the
upper bound (blue) and ideal loss (orange) during the training
of DAMF on Yahoo! R3 and Coat. First, it is evident from
the figures that our adversarial learning procedure effectively
minimizes the upper bound of the ideal loss during training.
Moreover, the figures suggest that the ideal loss function is



Datasets Methods user propensity item propensity user-item propensity 1BitMC

Yahoo! R3 MF-IPS 1.8216 (+61.5%) 1.8083 (+60.3%) 1.8714 (+65.9%) 1.7343 (+53.8%)
MF-DR 1.7445 (+67.2%) 1.9074 (+82.8%) 1.8815 (+80.4%) 1.8953 (+81.6%)

Coat MF-IPS 1.2171 (+14.0%) 1.2161 (+13.9%) 1.2044 (+12.8%) 1.2087 (+13.2%)
MF-DR 1.2141 (+12.8%) 1.2108 (+12.5%) 1.2181 (+13.2%) 1.2195 (+13.3%)

Table 2: Rating Prediction Performance of MF-IPS and MF-DR with Different Propensity Estimators

Note: Performances relative to the true propensity score are in parentheses. The result suggests that the performances of MF-IPS
and MF-DR using only MNAR data are significantly worse than the performances of those using the true propensity.

Methods NDCG@5 (± StdDev) Recall@5 (± StdDev)

MF 0.7645 (± 0.0008) 0.5616 (± 0.0006)
MF-IPS 0.7645 (± 0.0008) 0.5616 (± 0.0006)
MF-DR 0.7589 (± 0.0007) 0.5602 (± 0.0005)

DAMF (ours) 0.7904 (± 0.0011) 0.5737 (± 0.0004)
CausE 0.7645 (± 0.0007) 0.5617 (± 0.0006)

MF-IPS (true) 0.7454 (± 0.0021) 0.5565 (± 0.0011)
MF-DR (true) 0.7629 (± 0.0032) 0.5624 (± 0.0015)

Table 3: Ranking Performance on Yahoo! R3

Methods NDCG@5 (± StdDev) Recall@5 (± StdDev)

MF 0.6617 (± 0.0029) 0.3858 (± 0.0008)
MF-IPS 0.6717 (± 0.0026) 0.3844 (± 0.001)
MF-DR 0.6789 (± 0.0018) 0.3887 (± 0.0016)

DAMF (ours) 0.6847 (± 0.0034) 0.3901 (± 0.0011)
CausE 0.6332 (± 0.0039) 0.3752 (± 0.0013)

MF-IPS (true) 0.6772 (± 0.002) 0.3906 (± 0.0009)
MF-DR (true) 0.6758 (± 0.0014) 0.3900 (± 0.0012)

Table 4: Ranking Performance on Coat
Note: The bold font indicates the best performance in each metric
and dataset among methods using only MNAR data.

also minimized well by our method. These results demonstrate
that minimizing the theoretical upper bound in Eq. (6) is a
valid approach for improving the recommendation quality on
the MCAR test set.

5 Conclusion
We explored the problem of offline recommender learning
from only MNAR explicit rating feedback. To this end, we de-
rived the propensity independent generalization error bound
of the loss function and proposed an algorithm to minimize the
bound via adversarial learning. Our algorithm enables an accu-
rate rating prediction without estimating the propensity score,
thereby resolving the propensity contradiction of the existing
literature. Extensive experiments demonstrate the advantages
of the proposed framework in terms of rating prediction and
ranking measures when true propensities are inaccessible.

Our work represents an initial attempt for offline recom-
mender learning via adversarial training, and there are still
many problems to study in this direction. For example, our
theory leads to a propensity-independent upper bound of the
(ideal) rating prediction loss. It would be valuable to construct
a corresponding theory for the ranking task, such as show-
ing the propensity-independent upper bound of the additive

(a) Yahoo! R3

(b) Coat

Figure 1: Theoretical Upper Bound and Ideal Loss Function
during DAMF Training.

ranking metrics. Moreover, testing our method in an online
experiment will support the reliability of our framework. We
leave the investigation of these directions for future studies.

A Omitted Proofs

Throughout this section, we use the following Rademacher
complexity [Bartlett and Mendelson, 2002; Mohri et al., 2018],
which captures the complexity of a class of functions by mea-
suring its ability to correlate with random noise [Kuroki et al.,
2019].

Definition 2. (Rademacher complexity) Let H be any set
of real-valued matrices. Given i.i.d samples with observed
ratings {(u, i, Ru,i) | Ou,i = 1, (u, i) ∈ D}, the Rademacher



complexity of H is

RP ,M (H) := EO∼P Eξ

 sup
R̂∈H

1

M

∑
(u,i):Ou,i=1

ξu,iR̂u,i

 ,
where ξ = (ξ1, . . . ξM ) denotes a set of independent uniform
random variables taking values in {+1,−1}.

A.1 Uniform Derivation Bound

Lemma 1. (Rademacher Generalization Bound; A modified
version of Theorem 3.3 in [Mohri et al., 2018]) Let F = {f :
D → [0,∆]} be a class of bounded functions where ∆ > 0 is
a positive constant and {(u, i, Ru,i) | Ou,i = 1, (u, i) ∈ D}
be any i.i.d. sample drawn from P of size M . Then, for any
δ ∈ (0, 1), the following inequality holds with probability of
at least 1− δ

sup
f∈F

∣∣∣ 1
M

∑
(u,i):Ou,i=1

f(u, i)

︸ ︷︷ ︸
(a)

− 1

mn

∑
(u,i)∈D

Pu,i · f(u, i)︸ ︷︷ ︸
(b)

∣∣∣

≤ 2RP ,M (F) + ∆

√
log(2/δ)

2M
, (10)

where (a) is an empirical mean of a function (f ), and (b) is
its expectation over P .

A.2 Deviation Bound of PMD

The true propensity matrices (P and P ′) are unknown, and it
is necessary to estimate the PMD using their realizations (O
and O′). The following lemma shows the deviation bound of
PMD.

Lemma 2. Suppose any pair of propensity matrices (P and
P ′) and their realizations (O and O′) are given. Accordingly,
for any δ ∈ (0, 1) and H, the following inequality holds with
a probability of at least 1− δ:

∣∣∣ψR̂,H
(
P ,P ′)− ψR̂,H

(
O,O′)∣∣∣

≤ 4L (RP ,M (H) +RP ′,M (H)) + ∆

√
2 log(4/δ)

M
.

Proof. For any given real-valued prediction matrix R̂, we

have∣∣∣ψR̂,H(P ,P ′)− ψR̂,H(O,O′)
∣∣∣

=
∣∣∣ sup
R̂

′∈H
{Lℓ(R̂, R̂

′
;P )− Lℓ(R̂, R̂

′
;P ′)}

− sup
R̂

′∈H
{Lℓ(R̂, R̂

′
;O)− Lℓ(R̂, R̂

′
;O′)}

∣∣∣
≤ sup

R̂
′∈H

∣∣∣{Lℓ(R̂, R̂
′
;P )− Lℓ(R̂, R̂

′
;P ′)}

− {Lℓ(R̂, R̂
′
;O)− Lℓ(R̂, R̂

′
;O′)}

∣∣∣
= sup

R̂
′∈H

∣∣∣{Lℓ(R̂, R̂
′
;P )− Lℓ(R̂, R̂

′
;O)}

− {Lℓ(R̂, R̂
′
;P ′)− Lℓ(R̂, R̂

′
;O′)}

∣∣∣
= sup

R̂,R̂
′∈H

∣∣∣{Lℓ(R̂, R̂
′
;P )− Lℓ(R̂, R̂

′
;O)}

− {Lℓ(R̂, R̂
′
;P ′)− Lℓ(R̂, R̂

′
;O′)}

∣∣∣
≤ sup

R̂,R̂
′∈H

∣∣∣Lℓ(R̂, R̂
′
;P )− Lℓ(R̂, R̂

′
;O)

∣∣∣
+ sup

R̂,R̂
′∈H

∣∣∣Lℓ(R̂, R̂
′
;P ′)− Lℓ(R̂, R̂

′
;O′)

∣∣∣. (11)

The deviations in the last line can be bounded by using
Lemma 1, and the following inequalities hold with a prob-
ability of at least 1− δ/2.

sup
R̂

′∈H

∣∣∣Lℓ(R̂, R̂
′
;P )− Lℓ(R̂, R̂

′
;O)

∣∣∣
≤ 2RP ,M (H′) + ∆

√
log(4/δ)

2M
, (12)

sup
R̂

′∈H

∣∣∣Lℓ(R̂, R̂
′
;P ′)− Lℓ(R̂, R̂

′
;O′)

∣∣∣
≤ 2RP ′,M (H′) + ∆

√
log(4/δ)

2M
. (13)

where we regard H′ := {(u, i) → ℓ(R̂u,i, R̂
′
u,i) | R̂, R̂

′
∈

H} as F in Lemma 1. Then, we have

sup
R̂,R̂

′∈H

∣∣∣Lℓ(R̂, R̂
′
;P )− Lℓ(R̂, R̂

′
;O)

∣∣∣
≤ 4LRP ′,M (H) + ∆

√
log(4/δ)

2M
, (14)

sup
R̂,R̂

′∈H

∣∣∣Lℓ(R̂, R̂
′
;P ′)− Lℓ(R̂, R̂

′
;O′)

∣∣∣
≤ 4LRP ,M (H) + ∆

√
log(4/δ)

2M
. (15)

where RP ,M (H′) ≤ 2LRP ,M (H) by using the result of
Corollary 5 of [Mansour et al., 2009]. Finally, combining
Eq. (11), Eq. (14), and Eq. (15) with the union bound com-
pletes the proof.



A.3 Proof of Additional Lemmas
Here, we state the generalization error bound when using the
naive loss.
Lemma 3. (Generalization Error Bound) An MCAR-
observation matrix O ∼ P and any matrix as predictions
R̂ ∈ H are given. Then, for any δ ∈ (0, 1), the following
inequality holds with a probability of at least 1− δ:

Lℓ(R̂;P ) ≤ L̂ℓ
naive(R̂;O)

+ 2LRP ,M (H) + ∆

√
log(2/δ)

2M
. (16)

Proof. By using Lemma 1, we have

sup
R̂∈H

∣∣∣Lℓ(R̂;P )− L̂ℓ
naive(R̂;O)

∣∣∣
≤ 2RP ,M (ℓ ◦ H) + ∆

√
log(2/δ)

2M
.

with a probability of at least 1 − δ for any δ ∈ (0, 1). We
regard ℓ ◦ H = {D → ℓ(Ru,i, R̂u,i) | R̂ ∈ H} as F in
Lemma 1. Then, by using the Talagrand’s lemma (Lemma 5.7
of [Mohri et al., 2018]), we have

RP ,M (ℓ ◦ H) ≤ LRP ,M (H).

as ℓ is L-lipschitz.

Lemma 4. For any given predicted rating matrix R̂ ∈ H and
two propensity matrices (P and P ′), the following inequality
holds

Lℓ(R̂;P ) ≤ Lℓ(R̂;P ′) + ψR̂,H
(
P ,P ′) .

Proof. By the definition of PMD, we have

Lℓ(R̂;P ) = Lℓ(R̂;P ′)− Lℓ(R̂;P ′) + Lℓ(R̂;P )

≤ Lℓ(R̂;P ′) + sup
R̂

′∈H
{Lℓ(R̂,P )− Lℓ(R̂;P ′)}

= Lℓ(R̂;P ′) + ψR̂,H
(
P ,P ′) .

A.4 Proof of Theorem 1
Proof. First, we obtain the following inequality by replacing
P and P ′ for PMCAR and PMNAR in Lemma 4.

Lℓ
ideal(R̂) ≤L̂ℓ(R̂;PMNAR)

+ ψR̂,H(PMCAR,PMNAR), (17)

where Lℓ
ideal(R̂) = Lℓ(R̂;PMCAR) by definition. Then,

from Lemma 2 and Lemma 3, the following inequalities hold
with a probability of at least 1−2δ/3 and 1−δ/3, respectively.

Lℓ(R̂;PMNAR) ≤ L̂ℓ
naive(R̂;OMNAR)

+ 2LRP ,M (H) + ∆

√
log(6/δ)

2M
, (18)∣∣∣ψR̂,H(PMCAR,PMNAR)− ψR̂,H(OMCAR,OMNAR)

∣∣∣
≤ 4L(RP ,M (H) +RP ′,M (H)) + 2∆

√
log(6/δ)

2M
.

(19)

Combining Eq. (17), Eq. (18), and Eq. (19) with the union
bound completes the proof.

B Experiment Details
Datasets. We used the following real-world datasets.

• Yahoo! R35: It contains five-star user-song ratings. The
training data contain approximately 300,000 MNAR rat-
ings from 15,400 users for 1,000 songs, and the test data
were collected by a subset of users to rate 10 randomly
sampled songs.

• Coat6: It contains five-star user-coat ratings from 290
Amazon Mechanical Turk workers on an inventory of
300 coats. The training data contain 6,500 MNAR ratings
collected via self-selection by Turk workers. Conversely,
the test data were collected by asking Turk workers to
rate 16 randomly selected coats.

Note here that Yahoo! R3 and Coat are the only publicity
available real-world datasets that contain the test sets with
MCAR ratings. Figure 2 shows the training and test rating
distributions of Yahoo! R3 and Coat. The figures clearly show
the distributional shifts between the training and test sets.
Definition of Propensity Estimators. For MF-IPS and
MF-DR, we use user propensity, item propensity, user–item
propensity, and 1BitMC [Ma and Chen, 2019] as the variants
of the propensity estimator and report the results with the best
estimator for each dataset. Note that these four propensity esti-
mators are usable in real-world recommender systems because
they use only MNAR data. These four estimators are defined
as follows:

user propensity : P̂u,∗ :=

∑
i∈I Ou,i

maxu∈U

∑
i∈I Ou,i

,

item propensity : P̂∗,i :=

∑
u∈U Ou,i

maxi∈I

∑
u∈U Ou,i

,

user-item propensity : P̂u,i := P̂u,∗ · P̂∗,i,

1BitMC :

Γ̂u,i := arg min
Γ∈Fτ,γ

∑
(u,i)∈D

{Ou,i log(σ(Γu,i))

+ (1−Ou,i) log(1− σ(Γu,i))}

where Fτ,γ := {Γ ∈ Rm×n | ||Γ||∗ ≤ τ
√
mn, ||Γ||max ≤ γ},

|| · ||∗ (τ, γ > 0) denotes the nuclear norm, and || · ||max is
the entry-wise max norm. σ(·) is the sigmoid function, and
P̂u,i := σ(Γ̂u,i). We use the implementation provided by Ma
et al. [Ma and Chen, 2019] for 1BitMC. Note that 1BitMC is
a sophisticated version of the logistic regression to estimate
the propensity score described in Schnabel et al. [Schnabel et
al., 2016].
hyper-parameter Tuning. Table 5 shows the hyper-
parameter search space used in the experiments. We tune
the dimensions of the latent factors d in the range of
{5, 10, . . . , 40} and the L2-regularization hyper-parameter λ

5http://webscope.sandbox.yahoo.com/
6https://www.cs.cornell.edu/˜schnabts/mnar/



Yahoo! R3 (KL-div = 0.470) Coat (KL-div = 0.049)

Figure 2: Rating Distributions of Training and Test Sets of Yahoo! R3 and Coat.
Note: The rating distributions are significantly different between the training and test sets for both datasets. Note that KL-div is the
Kullback–Leibler divergence of the rating distributions between training and test sets. Therefore, the distributional shift of Yahoo! R3
dataset is relatively large compared to that of the Coat dataset.

in the range of [10−4, 1] for all methods. For DAMF and
CausE, the trade-off hyper-parameter β is also tuned in the
range of [10−2, 1]. We identify the best values for these hyper-
parameters by running an adaptive hyper-parameter tuning
procedure implemented in Optuna [Akiba et al., 2019] on a
validation set.

Datasets Methods d λ β

Yahoo! R3

MF-IPS

{5, 10, . . . , 40} [10−4, 1]

-
MF-DR
CausE

[10−2, 1]DAMF (ours)

Coat

MF-IPS

{5, 10, . . . , 40} [10−8, 1]

-
MF-DR
CausE [10−10, 1]

DAMF (ours) [10−2, 1]

Table 5: Hyper-parameter Search Space
Note: d is the dimension of the latent factors, λ is the
hyperparameter for the L2-regularization, and β is the trade-off
hyperparameter. We also used the Adam optimizer with 0.01 as its
initial learning rate for all methods.

Performance Measures. The following defines the perfor-
mance measures used in the experiments.

• MSE evaluates how far the predicted ratings are away
from the true rating and is defined as

MSE :=
1

|Dte|
∑

(u,i)∈Dte

(Ru,i − R̂u,i)
2,

where Dte is the user–item pairs in the test set.
• Normalized discounted cumulative gain (NDCG) mea-

sures the ranking quality and is defined as:

DCG@K :=
1

m

∑
(u,i)

2(Ru,i−1) · I{rank(u, i) ≤ K}
log2(rank(u, i) + 1)

.

where I{·} is the indicator function, rank(u, i) is a rank-
ing of i for u induced by R̂. Then, NDCG@K :=
DCG@K/IDCG@K, where IDCG@K is the maximum
possible DCG@K.

• Recall evaluates how many relevant items are selected
and is defined as

Recall@K :=
1

m

∑
(u,i)

Ru,i · I{rank(u, i) ≤ K}∑
i∈[n]Ru,i

.

C Related Work
This section summarizes the related literature.
Offline Recommender Learning from MNAR Feedback:
To address the selection bias of MNAR explicit feedback,
propensity-based methods have been explored [Liang et al.,
2016; Schnabel et al., 2016; Wang et al., 2019]. Among these,
the most basic method is the IPS estimation, which was origi-
nally established in causal inference [Imbens and Rubin, 2015;
Rosenbaum and Rubin, 1983; Rubin, 1974; Saito and Yasui,
2020]. This method provides an unbiased estimator of the
true metric of interest by weighting each data point using the
inverse of its propensity. The rating predictor based on the IPS
estimator empirically outperformed both the naive MF [Koren
et al., 2009] and probabilistic generative models [Hernández-
Lobato et al., 2014]. IPS can reasonably remove the bias of
naive methods, however, their performance depends on the
quality of the propensity score estimation [Saito et al., 2020c;
Saito, 2020a; Saito, 2020c; Saito et al., 2020b]. Specifically,
it is challenging to ensure the performance of the propensity
estimation in real-world recommendations, as users are in-
dependent in selecting which items to rate, and one cannot
control the missing mechanism [Marlin and Zemel, 2009]. In
addition to the simple IPS estimator, Wang et al. [Wang et al.,
2019] proposed the doubly robust (DR) variant to decrease the
variance of the propensity-weighting approach. The DR esti-
mator utilizes both the error imputation model and the propen-
sity model, and theoretically improves the bias and estimation
error bound compared to the IPS counterpart. However, the
proposed joint learning algorithm still requires pre-estimated
propensity scores [Wang et al., 2019]. Furthermore, the estima-
tion performance of the DR estimator is significantly degraded
when error imputation and propensity models are both mis-
specified [Saito et al., 2019; Saito, 2020b; Saito et al., 2020a;
Dudı́k et al., 2011; Wang et al., 2019; Kiyohara et al., 2022;



Kallus et al., 2021; Saito et al., 2019]. In the empirical evalua-
tion of the propensity-based methods, MCAR test data were
used to estimate the propensity score [Schnabel et al., 2016;
Wang et al., 2019]. However, MCAR data are unavailable in
most practical situations, as gathering a sufficient amount of
MCAR data requires more time and cost requirements for the
annotation process [Gilotte et al., 2018; Saito et al., 2020a;
Saito and Joachims, 2022; Saito and Joachims, 2021; Saito et
al., 2021].

Currently, there are two studies that address issues re-
lated to conventional propensity-based methods. Bonner
and Vasile [Bonner and Vasile, 2018] proposed CausE, a do-
main adaptation inspired method that introduces a regularizer
term on the discrepancy between latent factors obtained from
MCAR and MNAR data. However, this method requires some
MCAR training data, which are generally unavailable. More-
over, there is no theoretical guarantee for the proposed loss
function. Therefore, our method is more desirable than CausE
in that (i) Our method does not use any MCAR data in its
training process and is feasible in a realistic situation with no
MCAR data. (ii) Our method is theoretically refined as it is
designed to minimize the propensity-independent upper bound
of the ideal loss function.

Next, Ma et al. [Ma and Chen, 2019] proposed a propensity
estimation method, 1BitMC, which does not require MCAR
data. The authors constructed the theoretical guarantee for the
consistency of 1BitMC. However, it presupposes the use of
inverse propensity weighting to debias downstream recom-
menders; it cannot be used when there exists a user–item pair
with zero observed probability. Furthermore, its experiments
use only small-size recommendation datasets. In addition, the
performance of the recommendation methods with 1BitMC
was evaluated using only prediction accuracy measures. We
address the limitations of Ma et al. [Ma and Chen, 2019] as
follows: (i) Our proposed method and theory do not depend
on the propensity score and are applicable to settings where
there exists a user–item pair with zero observed probability.
(ii) Through comprehensive experiments on some moderately
sized datasets, we demonstrate that our proposed method per-
forms better than MF-IPS and MF-DR with 1BitMC for both
rating prediction and ranking tasks.

Unsupervised Domain Adaptation (UDA): The aim of UDA
is to train a predictor that works well on a target domain by
using only labeled source data and unlabeled target data during
training [Kuroki et al., 2019; Saito et al., 2017]. However,
the major challenge of UDA is that the feature distributions
and labeling functions can differ between the source and tar-
get domains. Thus, a predictor trained using only labeled
source data does not generalize well to the target domain.
Therefore, it is essential to measure the dissimilarity between
the domains to achieve a desired performance in the target
domain [Kuroki et al., 2019; Lee et al., 2019]. Several dis-
crepancy measures have been proposed to measure the dif-
ference in feature distributions between the source and tar-
get domains [Ben-David et al., 2010; Kuroki et al., 2019;
Lee et al., 2019; Zhang et al., 2019]. For example, H-
divergence and H∆H-divergence [Ben-David et al., 2010;
Ben-David et al., 2007] have been used to construct many

prediction methods for UDA, such as DANN, ADDA, and
MCD [Ganin and Lempitsky, 2015; Ganin et al., 2016;
Tzeng et al., 2017; Saito et al., 2018]. These methods are
based on the adversarial learning framework and can be theo-
retically explained as minimizing empirical errors and discrep-
ancy measures between the source and target domains. Note
that the optimization of these methods does not depend on
the propensity score. Thus, UDA is useful in constructing an
effective recommender with biased rating feedback, given the
absence of access to the true propensity score.

This study extended the idea of using a discrepancy mea-
sure to quantify the difference between two propensity score
matrices and derive a propensity-independent generalization
error bound, which is non-trivial given only the UDA litera-
ture, as it does not handle matrices with different distributions.
Moreover, we provided an algorithm to optimize the upper
bound of the ideal loss function via adversarial learning and
matrix factorization.
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