Counterfactual Cross-Validation

Stable Model Selection Procedure for Causal Inference Models

Yuta Saito¹ and Shota Yasui²

¹Tokyo Institute of Technology ²CyberAgent, Inc.

Accurate Causal Prediction = Accurate Decision Making

Causal prediction appears in all kinds of decision makings

- doctors want to decide whether they should administer a medication based on its causal effect on patients' survival rate
- advertisers want to decide whether they should advertise based on its causal effect on users' conversion rate

Optimal Decision Making Policy = Treat when causal effect is larger than treatment cost

Rubin-Neyman Potential Outcome Framework

Basic notation

- X: Feature or Covariate Vector
- T: Binary Treatment Indicator
- Y(1) / Y(0): Potential outcomes w/ or w/o a treatment
- Y=TY(1)+(1-T)Y(0): Observed outcome,

Prediction Target: Conditional Average Treatment Effect (CATE)

$$\tau(x) \coloneqq \mathbb{E}[Y(1) - Y(0) \mid X = x],$$

Fundamental Problem in CATE Prediction

Counterfactual outcome makes it impossible to directly apply supervised machine learning to CATE predcition

<u>Data</u>	<u>Feature</u>	<u>Treatment</u>	Observed Outcome	Counterfactual Outcome	CATE
А	X _A	T _A =1	Y _A (1)	Y _A (0)	?
В	X _B	T _B =0	Y _B (0)	Y _B (1)	?
•••	•••	•••	•••	•••	•••

Recent advances in Treatment Effect Prediction

Broad applications progress the theoretical and empirical breakthroughs

- Counterfactual Regression [Shalit et al. 2017]
- Propensity Dropout [<u>Alaa et al. 2017</u>]
- CEVAE [<u>Louizos et al. 2017</u>]
- CMGPs [Alaa&Van der Shaar. 2017]
- *GAN-ITE* [<u>Yoon et al. 2018</u>]
- SITE [Yao et al. 2018]
- ABCEI [<u>Du et al. 2019</u>]
- DragonNet [<u>Shi et al. 2019</u>]

Is developing only prediction methods sufficient for applying CATE prediction to real-world?

Recent advances in Treatment Effect Prediction

Broad applications progress the theoretical and empirical breakthroughs

- Counterfactual Regression [Shalit et al. 2017]
- Propensity Dropout [<u>Alaa et al. 2017</u>]
- CEVAE [Louizos et al. 2017]
- CMGPs [Alaa&Van der Shaar. 2017]
- *GAN-ITE* [<u>Yoon et al. 2018</u>]
- SITE [Yao et al. 2018]
- ABCEI [<u>Du et al. 2019</u>]
- DragonNet [Shi et al. 2019]

Is developing only prediction method sufficient for applying CATE prediction real-world?

Model Selection and Hyperparameter tuning are also essential

Our Focus: Model Selection and Hyperparamete Tuning

Model selection and hyperparameter tuning have not yet been fully investigated

Prior works focus on model evaluation, not model selection

- Survey on heuristic metrics [Schuer et al. 2018]
- A meta-estimation method [Alaa & van der Schaar. 2019]

We focus on developing model selection and hyperparameter tuning procedure used for CATE predictors

Goal in Model Selection and Hyperparameter Tuning

An observational validation set: $\mathcal{V} = \{X_i, T_i, Y_i\}_{i=1}^n$

A set of candidate CATE predictors: $\mathcal{M} = \{\widehat{\tau}_1, ..., \widehat{\tau}_{|\mathcal{M}|}\}$

We want to identify the best predictor among a set of candidates

$$\hat{\tau}_{best} = \arg\min_{\hat{\tau} \in \mathcal{M}} \mathcal{R}_{true}(\hat{\tau})$$

where $\mathcal{R}_{\mathrm{true}}\left(\widehat{ au}\right) = \mathbb{E}_{X}\left[\left(au(X) - \widehat{ au}(X)\right)^{2}\right]$

expected MSE or PEHE

Model Selection Approach for Building Evaluation Metric

We aimed to develop a metric that preserves the rank order of the ground-truth performance of candidate CATE predictors

$$\frac{\mathcal{R}_{\text{true}}\left(\widehat{\tau}\right) \leq \mathcal{R}_{\text{true}}\left(\widehat{\tau}'\right) \Rightarrow \widehat{\mathcal{R}}\left(\widehat{\tau}\right) \leq \widehat{\mathcal{R}}\left(\widehat{\tau}'\right), \ \forall \, \widehat{\tau}, \widehat{\tau}' \in \mathcal{M}.}{\text{True Performance Ranking}}$$
Ranking by Eval Metric

Our approach is specific to model selection and might be easier than directly estimating the ground-truth performance

Research Questions

$$\mathcal{R}_{\mathsf{true}}\left(\widehat{\tau}\right) = \mathbb{E}_{X}\left[\left(\tau(X) - \widehat{\tau}(X)\right)^{2}\right]$$

We use the following flexible and feasible class of evaluation metrics

Research Questions.

- 1. What is the ideal plug-in tau to identify the performance ranking?
- 2. How can we obtain it from observable validation data?

Technical Contributions

- We identify two conditions that the ideal plug-in tau should satisfy
 - plug-in tau should be unbiased and has a small expectation of conditional variance

- We propose a method to obtain a plug-in tau that satisfies the conditions well
 - combining doubly robust estimation and a modified version of CFR (shalit et al. 2017)

The first condition for building a plug-in tau

Condition 1: A plug-in tau should be an unbiased estimator for the CATE

Reason (cf. Proposition 1)

Suppose
$$\mathbb{E}\left[\tilde{\tau}\left(X,T,Y^{obs}\right)|X\right]=\tau(X)$$

$$\mathcal{R}_{true}(\hat{\tau}) \leq \mathcal{R}_{true}(\hat{\tau}') \Longrightarrow \mathbb{E}\left[\widehat{\mathcal{R}}(\hat{\tau})\right] \leq \left[\widehat{\mathcal{R}}(\hat{\tau}')\right]$$

The resulting evaluation metric identifies the true performance

_

But, we cannot take the expectation in finite samples..

In reality, we cannot take the expectation

this motivates us to investigate

finite sample error in ranking

$$\widehat{\mathcal{R}}\left(\widehat{\tau}\right) \qquad \underline{\text{Decomposition of Evaluation Metric}} \\ = \underbrace{\frac{1}{n} \sum_{i=1}^{n} (\tau(X_i) - \widehat{\tau}(X_i))^2}_{converges \ to \ \mathcal{R}_{true}(\widehat{\tau})} \\ - \underbrace{\frac{2}{n} \sum_{i=1}^{n} \left(\widehat{\tau}\left(X_i\right) - \tau\left(X_i\right)\right) \left(\widetilde{\tau}\left(X_i, T_i, Y_i\right) - \tau\left(X_i\right)\right)}_{\mathcal{W}: \text{source of uncertainty}}$$

$$+\underbrace{\frac{1}{n}\sum_{i=1}^{n}(\tau(X_i)-\tilde{\tau}(X_i,T_i,Y_i))^2}_{\text{independent of }\hat{\tau}}.$$
 (5)

The second condition for building a plug-in tau

Condition 2: A plug-in tau should have a small expectation of conditional variance

Reason (cf. Theorem 2)

 $C_{\max} = \max_{i \in [n]} \left(\tau \left(x_i \right) - \hat{\tau} \left(x_i \right) \right)^2$

Expectation of conditional variance of a plug-in tau

A guildeline for obtaining a good plug-in tau

A guideline to build an evaluation metric for CATE predictors

Condition 2
$$\min_{\tilde{ au}} \mathbb{E}\left[\mathbb{V}\left(\tilde{ au}(X,T,Y)\mid X\right)\right],$$

Condition 1 s.t.
$$\mathbb{E}[\tilde{\tau}(X,T,Y) \mid X] = \tau(X)$$
.

- Condition 1 ensures the identification of the performance ranking
- Condition 2 minimizes the finite sample error in ranking CATE predictors

Doubly Robust class for plug-in tau

We use a class of doubly robust plug-in tau

$$\tilde{\tau}_{DR}(X, T, Y; f_t)$$

$$:= \frac{T - e(X)}{e(X)(1 - e(X))} (Y - f_T(X)) + f_1(X) - f_0(X)$$

e(X): propensity score, f: regression function

Doubly robust plug-in tau is unbiased

The DR plug-in tau is unbiased regardless of a regression function

$$\mathbb{E}\left[\tilde{\tau}_{DR}\left(X,T,Y\right)|X\right] = \tau(X)$$

Doubly robust plug-in tau is unbiased

The DR plug-in tau is unbiased regardless of a regression function

$$\mathbb{E}\left[\tilde{\tau}_{DR}\left(X,T,Y\right)|X\right] = \tau(X)$$

It satisfies the condition 1, and we can focus on condition 2 when deriving a "regression function" f

Optimizing variance as a loss function of f

Condition 2 with DR plug-in tau

$$\min_{f \in \mathcal{F}} \mathbb{E}_X \left[\mathbb{V} \left(\tilde{\tau}_{DR}(X, T, Y; f) | X \right) \right]$$

minimization of the expectation of the conditional variance

= use it as a loss function when training a "regression function" f

The expectation of conditional variance is counterfactual

A problem is that the expectation of conditional variance of

the doubly robust plug-in tau cannot be optimized directly...

$$\mathbb{E}\left[\mathbb{V}\left(\tilde{\tau}_{DR}\left(X,T,Y;f_{t}\right)|X\right)\right]$$

$$= \zeta + \mathbb{E}_{X}\left[\left\{\sum_{t\in\mathcal{T}}\sqrt{w_{t}(X)}\left(f_{t}(X) - m_{t}(X)\right)\right\}^{2}\right]$$

where $m_t(x) := \mathbb{E}_{Y(t)}[Y(t)|X = x], \forall t \in \{0, 1\}$

Factual upper bound of the expectation of conditional variance

We optimize the factual version of the upper bound

by a weighted version of CFR (shalit et al. 2017)

$$\mathbb{E}_{X} \left[\left\{ \sum_{t \in \mathcal{T}} \sqrt{w_{t}(X)} \left(f_{t}(X) - m_{t}(X) \right) \right\}^{2} \right]$$

$$\leq 2 \left(\epsilon_{F_{1}}^{w_{1}}(h, \Phi) + \epsilon_{F_{0}}^{w_{0}}(h, \Phi) + B_{\Phi} \operatorname{IPM}_{G} \left(p_{t}^{\Phi}, p_{1-t}^{\Phi} \right) - 2\sigma^{2} \right)$$

weighted factual losses

regularization (integral probability metric)

Our proposed model selection procedure

- 1. Estimate the propensity score (if needed)
- 2. Train a regression function by "Weighted CFR"
- 3. Calculate the doubly robust plug-in tau for a given validation set
- 4. Calculate evaluation metric for every candidate CATE predictor
- 5. Deploy a CATE predictor having the best performance in our metric

IHDP Dataset

We use **IHDP dataset** [Hill 2011.]

contains the ground-truth CATE, enabling the evaluation of

evaluation metrics

- 747 samples with 25 features
- Used in many experiments on CATE prediction methods

$$\mathcal{M} = \{\widehat{\tau}_1, ..., \widehat{\tau}_{|\mathcal{M}|}\}$$

Experimental Procedure

- 1. Construct a set of candidate CATE predictors (|M|=25)
- 2. Split the IHDP data into training/validation/test sets
- 3. Train 25 candidate CATE predictors on the training set
- 4. Evaluate predictors using the validation set and evaluation metrics
- 5. Calculate the ground-truth performance using the test set
- 6. Evaluate evaluation metrics

Evaluation Metrics for Evaluation Metrics

1. Spearman Rank Correlation

Rank correlation between the model ranking by the evaluation metric values and the ground-truth performance

2. Regret in model selection

The performance of a CATE predictor selected by each metric

Experimental Results

Our procedure stably ranks the performance and selects the best one

		<u>Larger value is better</u>		Lower value is better	
		Rank Correlation		Regret	
	Methods	Mean ±StdErr	Worst-Case	Mean ±StdErr	Worst-Case
<u>baselines</u>	IPW	0.195 ± 0.039	-0.749	1.032 ± 0.100	6.779
	au-risk	0.312 ± 0.030	-0.553	1.392 ± 0.130	7.884
	Plug-in	0.914 ± 0.006	0.591	0.073 ± 0.012	0.780
proposed	CF-CV (ours)	0.921 ± 0.005	0.666	0.066 ± 0.012	0.562

Thank you for Listening!

website: https://usaito.github.io/

email: saito.y.bj at m.titech.ac.jp