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Abstract
We study the model selection problem in condi-
tional average treatment effect (CATE) prediction.
Unlike previous works on this topic, we focus on
preserving the rank order of the performance of
candidate CATE predictors to enable accurate and
stable model selection. To this end, we analyze
the model performance ranking problem and for-
mulate guidelines to obtain a better evaluation
metric. We then propose a novel metric that can
identify the ranking of the performance of CATE
predictors with high confidence. Empirical eval-
uations demonstrate that our metric outperforms
existing metrics in both model selection and hy-
perparameter tuning tasks.

1. Introduction
Predicting conditional average treatment effect (CATE) for
certain actions is essential for optimizing metrics of interest
in various domains. In digital marketing, incrementality
is becoming increasingly important as a performance met-
ric (Diemert et al., 2018). For instance, for a given product,
users who will be shown its ads should be chosen based on
CATE. It can help avoid showing ads to a user who will
buy that product even without seeing the ads. There can be
significant applications of CATE prediction in the health-
care segment as well (Alaa & van der Schaar, 2017). This
is because, for pursuing an optimal precision medicine, we
need to know which treatments will be beneficial or harmful
for a particular patient.

To achieve high-accuracy CATE prediction, one has to ad-
dress the fundamental problem of causal inference, which
is that both treated and untreated outcomes can never be ob-
served simultaneously from the same unit (Holland, 1986).
Hence we are unable to observe a causal effect and to use it
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as label to train prediction models. Most previous studies
related to the CATE prediction focused on developing meth-
ods that can address this fundamental problem and achieve
high prediction accuracy (Yoon et al., 2018; Yao et al., 2018;
Louizos et al., 2017; Shalit et al., 2017; Du et al., 2019; Alaa
& Schaar, 2018).

In model evaluation and selection, the fundamental problem
of causal inference poses an additional critical challenge.
Because labels are not observed directly, we are unable to
calculate loss metrics such as mean squared error (MSE).
Therefore, data-driven validation procedures such as cross-
validation are not directly applicable to model selection and
hyperparameter tuning of CATE prediction models. This
makes it challenging to identify the suitable model and
appropriate hyperparameter values that should be used when
applying CATE prediction to real-world problems.

Several prior studies tackle the model evaluation problem in
CATE prediction. (Gutierrez & Gérardy, 2017) proposed
using the inverse probability weighting (IPW) outcome as
the pseudo-label for the true CATE for the calculation of an
evaluation metric. (Schuler et al., 2018) used the loss func-
tion of R-learner (Nie & Wager, 2017) for the evaluation.
(Alaa & Van Der Schaar, 2019) used influence functions to
obtain a more efficient estimator for the loss. These works
are mainly focused on improving the accuracy of estimating
the evaluation metric of interest.

Unlike previous works, we focus on choosing the best model
or hyperparameters from potential candidates. For this pur-
pose, we only need to know the rank order of the perfor-
mance of candidate predictors, which is easier than directly
estimating the true performance. To achieve this, we first
theoretically analyze the problem of ranking the true perfor-
mance of CATE predictors and identify the conditions that
an ideal metric should satisfy. Building on the analysis, we
propose a novel evaluation procedure that preserves the true
performance ranking of candidate predictors and minimizes
the upper bound of the finite sample uncertainty in model se-
lection. Through empirical evaluations, we demonstrate that
the proposed metric performs better than existing heuristic
metrics in model selection and hyperparameter tuning of
CATE predictors.
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2. Related Work
CATE prediction has been extensively studied by combin-
ing causal inference and machine learning techniques aim-
ing for the best possible personalization of interventions.
State-of-the-art approaches are constructed by utilizing the
adversarial generative model, Gaussian process, deep neural
networks, and latent variable models (Yoon et al., 2018;
Alaa & Schaar, 2018; Louizos et al., 2017; Alaa & van der
Schaar, 2017; Hassanpour & Greiner, 2019; 2020; Shi et al.,
2019; Bica et al., 2020; Yao et al., 2020). Among the di-
verse methods that predict CATE from observational data,
the approach that is most related to this work is the method
based on representation learning (Bengio et al., 2013; Jo-
hansson et al., 2020). All methods based on representation
learning attempt to map the original feature vectors into
the desirable latent representation space so that it eliminates
selection biases. Balancing neural network (Johansson et al.,
2016) is the most basic method that uses discrepancy dis-
tance (Mansour et al., 2009), a domain discrepancy measure
in unsupervised domain adaptation for the regularization
term. Counterfactual regression (Shalit et al., 2017) mini-
mizes the upper bound of the ground-truth loss for the CATE
by utilizing an integral probability metric (Sriperumbudur
et al., 2012). In addition to these, methods that obtain a la-
tent representation by preserving a pairwise similarity (Yao
et al., 2018; 2019) or by applying adversarial learning (Du
et al., 2019) have been proposed.

The prediction methods stated above have provided promis-
ing results on standard benchmark datasets. However, previ-
ous studies have evaluated such CATE predictors by using
synthetic datasets or simple heuristic metrics such as policy
risk (Yoon et al., 2018; Shalit et al., 2017; Yao et al., 2018).
However, these evaluations do not give a definitive answer
about which models would actually be best suited for a given
real-world dataset (Alaa & Van Der Schaar, 2019; Setoguchi
et al., 2008). Therefore, to bridge the gap between CATE
prediction and applications, developing a reliable evaluation
metric is critical.

There are only a few studies directly tackling the evaluation
problem of CATE prediction models. (Schuler et al., 2018)
conducted an extensive survey of several heuristic metrics
and provided experimental comparisons. In particular, they
introduced inverse probability weighting (IPW) validation,
which utilizes an unbiased estimator for the true CATE as
an alternative to the true causal effects, and τ -risk, which is
based on a loss function of R-learner (Nie & Wager, 2017).
In addition, they showed that these metrics empirically out-
performed another naive metric, µ-risk, which estimates
predictive risk separately for treated and control outcomes
using only factual samples. In contrast, (Rolling & Yang,
2014) proposed a propensity matching-based metric called
TECV and showed its consistency to the true ranking of the

performance of CATE prediction models. However, they
did not analyze the uncertainty of the metric, such as its
asymptotic variance. It was also empirically outperformed
by IPW validation (Schuler et al., 2018). Nonetheless, (Alaa
& Van Der Schaar, 2019) improved heuristic plug-in met-
rics by introducing a meta-estimation technique using influ-
ence functions in a theoretically sophisticated manner. Our
proposed metric can be further improved by an estimation
method based on influence functions.

All the existing metrics aim to estimate the true metric of
interest directly, or they do not consider the uncertainty
in model selection. However, to conduct accurate model
selection and hyperparameter tuning, it is essential to rank
model performance accurately, although the aforementioned
metrics do not always guarantee the preservation of such
rankings. Moreover, analysis of the uncertainty of the model
evaluation is necessary, especially in domains in which the
size of the validation datasets might be small (e.g., education
or public health). Therefore, in contrast to previous works,
we investigate a method to accurately preserve the rank
order of performance of the candidate predictors while also
analyzing the finite sample uncertainty in model selection.

3. Setup
We denote X ∈ X ⊆ Rd as a d-dimensional feature vector
and T ∈ T = {0, 1} as a binary treatment assignment indi-
cator. When an individual i receives treatment, then Ti = 1,
otherwise, Ti = 0. We follow the potential outcome frame-
work (Rosenbaum & Rubin, 1983; Rubin, 2005; Imbens &
Rubin, 2015) and assume that there exist two potential out-
comes denoted as Y (0), Y (1) ∈ Y ⊆ R for each individual.
Y (0) is a potential outcome associated with T = 0, and
Y (1) is associated with T = 1. Note that each individual
receives only one treatment and reveals the outcome value
for the received treatment. We use p(X,T, Y (0), Y (1)), or
simply p, to denote the joint probability distribution of these
random variables.

We formally define the conditional average treatment effect
(CATE) for a given feature vector x ∈ X as:

τ(x) := E[Y (1)− Y (0) | X = x].

In addition, we use some notations to represent parame-
ters of p. First, we define the expected potential outcomes
conditioned on a feature vector x ∈ X as:

mt(x) := EY (t)[Y (t) | X = x], ∀t ∈ {0, 1}.

Next, we define the propensity score as:

e(x) := P (T = 1 | X = x) .

This parameter is widely used to estimate treatment effects
from observational data (Rosenbaum & Rubin, 1983; Rubin,
1974; Imbens & Rubin, 2015).
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Throughout the paper, we make the following standard as-
sumptions in causal inference:

Assumption 1. (Unconfoundedness) Potential outcomes
(Y (0), Y (1)) are independent of the treatment assignment
indicator T conditioned on the feature vector X , i.e.,

Y (0), Y (1)⊥⊥T | X.

Assumption 2. (Overlap) For any x ∈ X , the true propen-
sity score is strictly between 0 and 1, i.e., 0 < e(x) < 1.

Assumption 3. (Consistency) Observed outcome Y is rep-
resented using the potential outcomes and treatment assign-
ment indicator as follows:

Y = TY (1) + (1− T )Y (0).

Under these assumptions, the CATE is identifiable from
observational data, i.e., τ(x) = E[Y |X = x, T = 1] −
E[Y |X = x, T = 0].

Furthermore, we define some essential notations follow-
ing (Shalit et al., 2017).

Definiton 1. (Representation Function) Φ : X → R is a
representation function andR is called the representation
space. We assume that Φ is a twice differentiable, one-to-
one function. Moreover, pΦ

t := p(r|t = 1) and pΦ
1−t :−

p(r|t = 0) are feature distributions for the treated and
for the controlled induced over the representation space.
We also have Ψ : R → X as the inverse of Φ, where
Ψ(Φ(x)) = x,∀x ∈ X .

Definiton 2. (Factual and Counterfactual Loss Functions)
Let h : R × T → Y be a hypothesis, w : X → R≥0 be
a weighting function, and L : Y × Y → R≥0 be a loss
function. In addition, the expected loss for the unit and
treatment pair (x, t) ∈ X × T is denoted as:

`wh,Φ(x, t) := EY (t) [w(x)L(Y (t), h(Φ(x), t)) | X = x] .

where we use the squared loss: L(y, y′) = (y − y′)2, here-
inafter. Then, the expected factual and counterfactual losses
of a combination of a hypothesis h and a representation
function Φ are defined as:

εwF (h,Φ) :=

∫
X×T

`wh,Φ(x, t)p(x, t)dxdt,

εwCF (h,Φ) :=

∫
X×T

`wh,Φ(x, t)p(x, 1− t)dxdt.

where F and CF stand for factual and counterfactual, re-
spectively. Further, the expected factual and counterfactual
losses on the treated (t = 1) and on the controlled (t = 0)

are represented as:

εwF1
(h,Φ) :=

∫
X
`wh,Φ(x, t = 1)p1(x)dx,

εwF0
(h,Φ) :=

∫
X
`wh,Φ(x, t = 0)p0(x)dx,

εwCF1
(h,Φ) :=

∫
X
`wh,Φ(x, t = 0)p1(x)dx,

εwCF0
(h,Φ) :=

∫
X
`wh,Φ(x, t = 1)p0(x)dx.

where pt(x) := p(x | T = t).

By the definition of the conditional probability, the following
equations hold for factual and counterfactual losses:

εwF (h,Φ) = π1 · εwF1
(h,Φ) + π0 · εwF0

(h,Φ),

εwCF (h,Φ) = π1 · εwCF1
(h,Φ) + π0 · εwCF0

(h,Φ),

where πt := P(T = t).

We also define a class of metrics between probability distri-
butions (Sriperumbudur et al., 2012).

Definiton 3. (Integral Probability Metric) For two probabil-
ity density functions defined over a space S ⊆ Rd and for
a family of functions G := {g : S → R}, the IPM between
the two density functions p and q is defined as:

IPMG(p, q) := sup
g∈G

∣∣∣∣∫
S
g(s) (p(s)− q(s)) ds

∣∣∣∣ .
Function families G can be the family of bounded continu-
ous functions, the family of 1-Lipschitz functions, and the
unit-ball of functions in a universal reproducing Hilbert
kernel space.

3.1. Evaluation of CATE prediction models

In previous studies (Gutierrez & Gérardy, 2017; Schuler
et al., 2018; Alaa & Van Der Schaar, 2019), the evaluation
of a CATE predictor τ̂(·) has been formulated as accurately
estimating the following ground-truth performance metric
from a size n of i.i.d observational validation dataset V =
{Xi, Ti, Yi}ni=1:

Rtrue(τ̂) := EX [L (τ(X), τ̂(X))]

= EX
[
(τ(X)− τ̂(X))

2
]
, (1)

whereRtrue(τ̂) is the true performance metric of τ̂(·)1.

This approach is intuitive and ideal. However, realizations
of the true CATE are never observable, and thus, accurate
performance estimation is difficult. Moreover, estimating

1Eq. (1) is also termed as the expected precision in estimation
of heterogeneous effect (PEHE).
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the true metric values is not always necessary to conduct
valid model selection or hyperparameter tuning. It may
be possible to obtain a better evaluation metric under an
objective specific to selection and tuning. Thus, we take a
different approach from previous works and aim to construct
a performance estimator R̂ (τ̂) satisfying the following con-
dition:

Rtrue (τ̂) ≤ Rtrue (τ̂ ′)⇒ R̂ (τ̂) ≤ R̂ (τ̂ ′) , ∀ τ̂ , τ̂ ′ ∈M.
(2)

whereM = {τ̂1, ..., τ̂|M|} is a set of candidate CATE pre-
dictors.

An estimator satisfying Eq. (2) gives an accurate ranking of
candidate predictors by the ground-truth metric, and we can
identify the best model amongM using such an estimator.
Our goal is to construct a sophisticated method to obtain a
performance estimator that can help achieve the condition
described in Eq. (2) to enable accurate model selection of
CATE predictors.

4. Method
To achieve our goal, we consider the following feasible
estimator for the ground-truth performance metric:

R̂ (τ̂) :=
1

n

n∑
i=1

(τ̃ (Xi, Ti, Yi)− τ̂ (Xi))
2 (3)

where τ̃ (·) is the plug-in tau and is calculated by using vali-
dation set. We consider the estimator in the form of Eq. (3),
because it can be applied to estimating the performance of a
method directly predicting CATE such as R-learner (Nie &
Wager, 2017) and doubly robust learner (Foster & Syrgkanis,
2019).

Under our formulation, we aim to answer the following
research question: What is the best plug-in tau to rank the
performance of given candidate CATE predictors from an
observational validation dataset?

To address this question, in Section 4.1, we theoretically
analyze the performance estimator in the form of Eq. (3)
and identify the conditions that an ideal plug-in tau should
satisfy. Then, in Section 4.2, we propose a method to obtain
a plug-in tau that results in an accurate ranking of the true
performance of candidate CATE predictors.

4.1. What is the good plug-in tau?

First, the following proposition states that a plug-in tau that
is unbiased for the true CATE provides a desirable property
of the resulting performance estimator.

Proposition 1. Suppose that a given plug-in tau
is an unbiased estimator for the true CATE (i.e.,

E [τ̃ (X,T, Y ) | X] = τ(X)), then, the expectation of the
performance estimator R̂ is decomposed into the true per-
formance metric and the MSE of the given plug-in tau:

E
[
R̂ (τ̂)

]
= Rtrue (τ̂) + E

[
(τ(X)− τ̃(X,T, Y ))

2
]

︸ ︷︷ ︸
independent of τ̂

(4)

See Appendix A.1 for the proof.

The first term of RHS of Eq. (4) is the true performance
metric, and the second term is independent of the given
predictor. Therefore, the expectations of the performance
estimators preserve the difference between the true metric
values as follows:

E
[
R̂ (τ̂1)

]
− E

[
R̂ (τ̂2)

]
= Rtrue (τ̂1)−Rtrue (τ̂2)

where τ̂1, τ̂2 ∈M are arbitrary candidate predictors. This
property is desirable, because the predictor that has the
smallest expected value of R̂ among candidate predictors
also has the smallest value ofRtrue among them; one can
expect to select the best predictor among a set of candidates.

However, the expectation of the performance estimator is
incalculable, because we can use only a finite sample vali-
dation set. This motivates us to consider the finite sample
uncertainty of the performance estimator. The empirical
version of the performance estimator can be decomposed as

R̂ (τ̂)

=
1

n

n∑
i=1

(τ(Xi)− τ̂(Xi))
2

︸ ︷︷ ︸
converges toRtrue(τ̂)

− 2

n

n∑
i=1

(τ̂ (Xi)− τ (Xi)) (τ̃ (Xi, Ti, Yi)− τ (Xi))︸ ︷︷ ︸
W:source of uncertainty

+
1

n

n∑
i=1

(τ(Xi)− τ̃(Xi, Ti, Yi))
2

︸ ︷︷ ︸
independent of τ̂

. (5)

In the RHS of Eq. (5),W is critical to the uncertainty and
is controllable by τ̃ . Thus, we try to minimize the variance
ofW with the aim of minimizing the uncertainty in model
selection. The following theorem upper bounds the variance
ofW .

Theorem 2. Suppose that the plug-in tau is unbiased for
the CATE and the output of the plug-in tau for an instance
is independent of that of other instances. Then, we have the
upper bound of the variance ofW as follows:

V (W) ≤ 4Cmaxn
−1 EX [V (τ̃(X,T, Y ) | X)] , (6)
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where Cmax = supx∈X (τ(x)− τ̂(x))2. See Appendix A.5
for the proof.

In Eq. (6), the expected conditional variance of τ̃ is con-
trollable by the construction of the plug-in tau. Thus, a
plug-in tau satisfying the following condition is desirable to
construct a stable performance estimator:

min
τ̃∈Θ

EX [V (τ̃(X,T, Y ) | X)] ,

s.t. E[τ̃(X,T, Y ) | X] = τ(X). (7)

where Θ is a pre-defined class of plag-in tau.

A performance estimator using a plug-in tau that achieves
Eq. (7) is expected to preserve the difference of the true
performance metric and to minimize the upper bound of the
finite sample uncertainty termW in Eq. (5).

4.2. Obtaining plug-in tau

Next, we present a method to obtain a desirable plug-in
tau inspired by the doubly robust (DR) estimator in causal
inference and counterfactual regression (CFR) in CATE
prediction (Bang & Robins, 2005; Dudı́k et al., 2011; Shalit
et al., 2017). The proposed procedure is designed to preserve
unbiasedness of plug-in tau using the DR estimator and to
minimize its expected conditional variance with the power
of CFR. Thus, the idea of combining the DR estimator and
CFR is a key to better satisfy Eq. (7). Subsequently, we
formally describe the resulting model selection procedure,
counterfactual cross-validation (CF-CV).

First, we define a class of plug-in tau building on the DR
estimator.
Definiton 4. The doubly robust plug-in tau for a given data
(X,T, Y ) is defined as follows:

τ̃DR(X,T, Y ; ft)

:=
T − e(X)

e(X)(1− e(X))
(Y − fT (X)) + f1(X)− f0(X),

(8)

where ft : X → Y is an arbitrary regression function.

We rely on the class of the DR estimator for constructing the
plug-in tau, because we can design the regression function
for a variety of purposes. For example, the more robust
doubly robust estimator utilizes a weighted squared loss
to derive the regression function to minimize the variance
of the resulting policy value estimator (Farajtabar et al.,
2018). In contrast, we can utilize the regression function to
minimize the upper bound of the finite sample uncertainty
in model selection. These objectives cannot be achieved
with model-free estimators such as the IPW estimator.

Note that our proposed plug-in tau cannot be used for the
CATE prediction task because only the feature vectors are

available while making predictions. In contrast, the treat-
ment assignment and the observed outcome are unavailable.
Thus, the plug-in tau in the form of Eq. (8) is specialized
for the evaluation of CATE predictors.

First, the plug-in tau in the form of Eq. (8) is unbiased
against the true CATE as follows.
Proposition 3. Given true propensity scores and a regres-
sion function, the proposed plug-in tau is unbiased against
the true CATE, i.e.,

E [τ̃DR(X,T, Y ; ft) | X] = τ(X).

See Appendix A.3 for the proof.

Next, to consider the condition in Eq. (7), we state the
expected conditional variance of the plug-in tau.
Proposition 4. Given true propensity scores and a regres-
sion function, the expected conditional variance of the pro-
posed plug-in tau can be represented as:

EX [V (τ̃DR(X,T, Y ; ft) | X)]

= ζ + EX

[
{
∑
t∈T

√
wt(X)(ft(X)−mt(X))}2

]
, (9)

where

wt(X) :=
t(1− 2e(X)) + e(X)2

e(X)(1− e(X))
,

ζ := EX

[∑
t∈T

e(X) + t(1− 2e(X))

e(X)(1− e(X))
(Y (t)−mt(X))2

]
.

See Appendix A.4 for the proof.

In Eq. (9), ζ is independent of f . Thus, we can pursue the
minimization of the expected conditional variance of τ̃DR
by training f with the following procedure:

min
f∈F

EX

[
{
∑
t∈T

√
wt(X)(ft(X)−mt(X))}2

]
, (10)

where F is a class of regression functions. A problem is that
the direct minimization of Eq. (10) is infeasible, because
m0(x) or m1(x) is always counterfactual. Therefore, we
derive the upper bound of the second term of Eq. (9) using
only observable variables.
Theorem 5. Let G be a family of functions g : R → Y and
suppose that, for any given t ∈ T and w : X × T → R≥0,
there exists a positive constant BΦ such that the per-unit
expected loss functions obey 1

BΦ
· `wh,Φ(Ψ(r), t) ∈ G where

Ψ is the inverse image of Φ. Then, the following inequality
holds:

EX [{
∑
t∈T

√
wt(X)(ft(X)−mt(X))}2]

≤ 2
(
εw1

F1
(h,Φ) + εw0

F0
(h,Φ)

+BΦIPMG

(
pΦ
t , p

Φ
1−t
)
− 2σ2

)
, (11)
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where σ2 := min(t,t′)∈T 2{σ2
t,wt

(pt′)}, and

σ2
t,w(pt′)

:=

∫
X×Y

w(x)(Y (t)−mt(x))2p(Y (t)|x)pt′(x)dY (t)dx.

See Appendix A.7 for the proof.

Eq. (11) consists of factual losses and an IPM on the repre-
sentation space, and thus can be estimated from observed
samples. The intuition is that the counterfactual losses can
be upper bounded by the sum of weighted factual losses and
IPM between distributions of the treated and the controlled.
Therefore, we can optimize the upper bound of the expected
conditional variance of τ̃DR using only factual samples in a
manner similar to CFR (Shalit et al., 2017). Thus, we build
on the CFR’s structure and define our regression function
as ft(x) = h (Φ(x), t). We then consider the following
empirical approximation of Eq. (11) as a loss to derive a
hypothesis h and representation function Φ:

h,Φ = min
h,Φ

n∑
i=1

w′t(xi)

n
· L (h (Φ (xi) , ti) , yi)︸ ︷︷ ︸

empirical weighted risk

+ αIPMG

(
{Φ (xi)}i:ti=0 , {Φ (xi)}i:ti=1

)︸ ︷︷ ︸
distributional distance

. (12)

where w′t(xi) = wt(xi)
2

(
ti
π̂1

+ 1−ti
π̂0

)
and π̂t =

n−1
∑n
i=1 I{ti = t}.

We use parameterized deep neural networks for Φ(x) and
h (Φ(x), t) and train them in an end-to-end manner using
the Adam optimizer (Kingma & Ba, 2014). α is a trade-off
hyperparameter which is a replacement of the incomputable
factor BΦ. We use the Wasserstein distance (Shalit et al.,
2017; Cuturi & Doucet, 2014) as IPMG in the experiments.

The derived plug-in tau is unbiased for the true metric and
minimizes the upper bound of the controllable term in its
expected conditional variance in Eq. (11), enabling the ac-
curate and stable model selection of CATE predictors. Algo-
rithm 1 summarizes the resulting model selection procedure.

5. Experiments
We compare our proposed evaluation procedure and other
existing heuristics using a standard semi-synthetic dataset.2

5.1. Experimental Setup

We used the Infant Health Development Program (IHDP)
dataset provided by (Hill, 2011). The original data is ob-
tained from a randomized study of the impact on educational

2Our code used to conduct the semi-synthetic experiments is
available at https://github.com/usaito/counterfactual-cv

Algorithm 1 Counterfactual Cross-Validation (CF-CV)
Require: A set of candidate CATE predictors M =
{τ̂1, ..., τ̂|M|}; an observational validation dataset V =
{Xi, Ti, Y }ni=1; and a trade-off hyperparameter α.

1: Train f (X,T ) by minimizing Eq. (12) using V .
2: Estimate the propensity score (if needed).
3: Calculate the plug-in tau τ̃DR of samples in V .
4: Estimate performance of candidate predictors in M

based on the performance estimator R̂ and τ̃DR.
Ensure: A selected predictor: τ̂∗ = arg minτ̂∈M R̂ (τ̂).

and follow-up interventions on cognitive development of
children (Hill, 2011; Shalit et al., 2017; Alaa & Schaar,
2018; Yao et al., 2018). This is a standard semi-synthetic
dataset of 747 children with 25 features and has been widely
used to evaluate CATE prediction models (Shalit et al., 2017;
Yoon et al., 2018; Alaa & Schaar, 2018; Yao et al., 2018; Jo-
hansson et al., 2020). To enable evaluation with the ground-
truth CATE, the outcome of this dataset was synthesized by
applying several different stochastic models on the observed
features. Moreover, to introduce confounding, a biased sub-
set of the treatment group was removed. Note that we did
not use real-world causal inference datasets such as jobs
and twins (Yoon et al., 2018; Shalit et al., 2017), because
they do not contain the ground-truths for the true CATE
and consequently are unable to perform the evaluation of
evaluation metrics.

We compared the following evaluation metrics in model
selection and hyperparameter tuning tasks:

(i) IPW validation (Gutierrez & Gérardy, 2017; Schuler
et al., 2018): This metric utilizes the following performance
estimator:

R̂IPW (τ̂) =
1

n

n∑
i=1

(τ̃IPW (Xi, Ti, Yi)− τ̂(Xi))
2

where

τ̃IPW (Xi, Ti, Yi) =
Ti

e(Xi)
Yi −

1− Ti
1− e(Xi)

Yi

is used as a plug-in-tau that satisfies the unbiasedness for
the CATE.

(ii) Plug-in validation: This uses predicted values of poten-
tial outcomes by an arbitrary machine learning algorithm as
the plug-in tau of the performance estimator in Eq. (3).

R̂plug-in (τ̂) =
1

n

n∑
i=1

(
(τ̃

(1)
i − τ̃ (0)

i )− τ̂(Xi)
)2

where τ̃ (1)
i and τ̃ (0)

i are predictions for the potential out-
comes. We used CFR (Shalit et al., 2017) to construct
τ̃ (1)(·) and τ̃ (0)(·) to ensure a fair comparison.

https://github.com/usaito/counterfactual-cv
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Table 1. Comparison of Model Selection and Hyperparameter Tuning Performance of Alternative Evaluation Metrics.

Rank Correlation Regret NRMSE
Methods Mean ±StdErr Worst-Case Mean ±StdErr Worst-Case Mean ±StdErr Worst-Case

IPW 0.195 ±0.039 -0.749 1.032 ±0.100 6.779 0.336 ±0.013 0.737
τ -risk 0.312 ±0.030 -0.553 1.392 ±0.130 7.884 0.324 ±0.013 0.700

Plug-in 0.914 ±0.006 0.591 0.073 ±0.012 0.780 0.257 ±0.010 0.490

CF-CV (ours) 0.921 ±0.005 0.666 0.066 ±0.012 0.562 0.256 ±0.009 0.483

Notes: Mean with standard errors (StdErr), and worst-case performance of the compared evaluation metrics over 100
realizations are reported. The red fonts represent the best performance in each performance measures.

(iii) τ -risk (Schuler et al., 2018): This metric is derived
from the loss function of R-learner in (Nie & Wager, 2017)
and is defined as follows:

R̂τ (τ̂) =
1

n

n∑
i=1

((Yi −m(Xi))− (Ti − e(Xi))τ̂(Xi))
2

where m(·) is the expectation of observed outcome E[Y |X].
We used gradient boosting regressor (GBR) implemented in
scikit-learn to estimate this parameter.

(iv) Counterfactual Cross-Validation: This is our pro-
posed metric, which relies on the plug-in tau in Eq. (8).
The hyperparameter tuning procedure to derive the regres-
sion function f can be found in Appendix B.1.

We used logistic regression to estimate the propensity score
for CF-CV and IPW validation, because the true propensity
score is generally unknown in real-world situations. For
plug-in validation and CF-CV, we used the µ-risk (Schuler
et al., 2018) as a data-driven heuristic to tune hyperparame-
ters of machine learning models to obtain predictions of the
potential outcomes or the regression function.

5.2. Model Selection Performance

We first tested the model selection performance.

Experimental Procedure. We followed the experimental
procedure in (Schuler et al., 2018); We trained candidate
predictors on the training set and made predictions on both
validation and test sets. Then, we ranked those predictors
based on each evaluation metric on the validation set.
Finally, we compare these estimated performances on
the validation set and the true performance on the testing
set. We conducted the experimental procedure over 100
different realizations with 35/35/30 train/validation/test
splits.

Candidate Models. We constructed a set of candidate pre-
dictorsM by combining five machine learning algorithms
(decision tree, random forest, gradient boosting tree, ridge

regressor, and support vector regressor) implemented in
scikit-learn and five meta-learners (S-learner, X-learner,
T-learner, domain adaptation learner, and doubly robust
learner) implemented in EconML3. Thus, we had a set of 25
CATE predictors to select among (i.e., |M| = 25).

Results. Table 1 reports the mean and worst-case perfor-
mances over 100 realizations. We evaluated the worst-case
model selection performance, because we never know the
ground-truth performance of any predictor in the real-world,
and stable model selection performance is essential. Rank
correlation is the Spearman rank correlation between the
rankings by the true performance and the estimated metric
values. Regret in model selection is the difference between
the true performance of the selected model and that of the
best possible candidate inM, which is defined as:

Regret =
Rtrue (τ̂selected)−Rtrue (τ̂best)

Rtrue (τ̂best)

where τ̂selected = arg minτ̂∈M R̂(τ̂) is the model selected
by R̂ and τ̂best = arg minτ̂∈MRtrue (τ̂) is the best model
inM.

Table 1 shows the effective model selection performance of
the proposed CF-CV. In particular, it significantly outper-
formed the others in terms of the worst-case performance.
This result empirically suggests that the proposed metric can
stably select a well-performing CATE predictor among po-
tential candidates and is an appropriate choice for real-world
situations. The stability of CF-CV could be a result of its
variance upper bound minimization property. The improve-
ment of the worst-case performance is essential in many
causal inference problems such as personalized medicine,
which has a great impact on human lives. Our procedure
thus helps avoid deploying poor-performing CATE predic-
tors and enable the safe uses of causal inference in practice.
We also evaluated the sensitivity of the proposed metric
to changes in the trade-off hyperparameter α. Figure 1
shows the performances of CF-CV with variation of α com-

3https://econml.azurewebsites.net/
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(a) Rank correlation of CF-CV with different values of α (b) Regret of CF-CV with different values of α

Figure 1. Comparing CF-CV with varying α and the plug-in validation. CF-CV (the blue lines) outperforms the plug-in validation (the
orange lines) in most cases and demonstrates its robustness to the choice of α.

pared to the performance of the plug-in validation. For the
rank correlation, CF-CV generally outperformed the plug-
in metric with small values of α, although it was slightly
outperformed by the plug-in with a larger α. Additionally,
CF-CV consistently outperformed the plug-in validation
with all values of α in regret. These results suggest that the
proposed metric is robust to the choice of α.

5.3. Hyperparameter Tuning Performance

Next, we compared the hyperparameter tuning performance.

Tuned Model. We tuned the hyperparameters of the
combination of GBR and domain adaptation learner (DAL)
implemented in scikit-learn and EconML, respectively. DAL
consists of three base learners including treated model,
controls model, and overall model. Thus, we aimed to
find the best three sets of hyperparameters of GBR to
optimize the resulting CATE prediction model.

Experimental Procedure. We used Optuna (Akiba et al.,
2019) to tune the CATE predictor and set each metric as its
objective function. For each metric, we sought 100 points
in the hyperparameter search space4. The hyperparameter
tuning performance of each metric was evaluated by the
true performance of the tuned model on the testing set. We
repeated the experimental procedure with 100 different
realizations and train/validation/test splits.

Results. Table 1 provides the results of the hyperparameter
tuning experiment. We report the mean and worst-case

4The hyperparameter search space is described in Appendix B.2

normalized root-mean-squared-error (NRMSE) of CATE
predictors tuned by each metric defined below5.

NRMSE =

√
n−1

∑n
i=1(τ(Xi)− τ̂(Xi))2

V̂(τ(X))

where {τ̂(Xi)}ni=1 is a set of CATE predictions by τ̂(·) and
V̂(τ) is an empirical variance of the ground-truth CATE.

Table 1 shows that our metric improved the worst-case per-
formance by 1.4 % compared to the best baselines. Although
the mean NRMSE is almost the same as that with the plug-in
validation, the results demonstrate that the proposed metric
allows stable hyperparameter tuning of the CATE prediction
models.

6. Conclusion
In this work, we studied the model selection problem in
CATE prediction. In contrast to previous studies, we aimed
to identify the rank order of the true prediction performances
of the candidate prediction models. We achieved this by
using a modified version of the CFR as a regression function
of the DR estimator to minimize the finite sample uncer-
tainty. Empirical evaluations demonstrated the effectiveness
and stability of the proposed metric for model selection and
hyperparameter tuning of the CATE predictors.

Important future research directions include consideration of
situations with hidden confounders, and a possible extension
to the off-policy evaluation of bandit policies.

5We used NRMSE, as the potential outcomes of the IHDP
dataset have different scales among realizations.
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Counterfactual Cross-Validation:
Stable Model Selection Procedure for Causal Inference Models– Appendix

A. Omitted Proofs
In this section, we denote τ(X), τ̂(X), and τ̃(X,T, Y ) as τ , τ̂ , and τ̃ for simplicity. We also denote τ(Xi), τ̂(Xi), and
τ̃(Xi, Ti, Yi) as τi, τ̂i, and τ̃i.

A.1. Proof of Proposition 1

Proof. First, the following equality holds:

E
[
R̂(τ̂)

]
= E

[
1

n

n∑
i=1

(τ̃i − τ̂i)2

]
=

1

n

n∑
i=1

E
[
(τ̃ − τ + τ − τ̂)2

]
= E

[
(τ̃ − τ)2

]
− 2

n

n∑
i=1

E [(τ̂ − τ)(τ̃ − τ)]︸ ︷︷ ︸
(a)

+E
[
(τ̂ − τ)2

]︸ ︷︷ ︸
Rtrue(τ̂)

Then, we have (a) = E [(τ̂ − τ)(τ̃ − τ)] = E [E [(τ̂ − τ)(τ̃ − τ) | X]] = E [(τ̂ − τ)(E[τ̃ | X]− τ)] = 0.

Thus, we obtain E[R̂ (τ̂)] = Rtrue (τ̂) + E[(τ̃ − τ)
2
].

A.2. Derivation of Eq. (5)

Proof. Following the same procedure as in the proof of Proposition 1, we have

R̂(τ̂) =
1

n

n∑
i=1

(τ̃i − τ̂i)2 =
1

n

n∑
i=1

(τ̃i − τi + τi − τ̂i)2 =
1

n

n∑
i=1

(τ̃i − τi)2 − 2

n

n∑
i=1

(τ̃i − τi)(τ̂i − τi) +
1

n

n∑
i=1

(τ̂i − τi)2

A.3. Proof of Proposition 3

Proof. We rewrite the DR plug-in tau in Eq. (8) as:

τ̃DR(X,T, Y ) =
T

e(X)
(Y − f1(X))− 1− T

1− e(X)
(Y − f0(X)) + (f1(X)− f0(X))

= τ̃DR1
(X,T, Y )− τ̃DR0

(X,T, Y )

where τ̃DR1
(X,T, Y ) = T

e(X) (Y − f1(X)) + f1(X) and τ̃DR0
(X,T, Y ) = 1−T

1−e(X) (Y − f0(X)) + f0(X).

Then, the expectation of τ̃DR1
is E [τ̃DR1

| X] = E
[

T
e(X) | X

]
E [(Y (1)− f1(X)) | X] + f1(X) = E [Y (1) | X].

We also have E [τ̃DR0 | X] = E [Y (0) | X] in the same way. Thus, we have, E [τ̃DR | X] = E [Y (1)− Y (0) | X] = τ .

A.4. Proof of Proposition 4

Proof. The second moment of τ̃DR1
is

E
[
(τ̃DR1

)
2 | X

]
= E

[(
T

e(X)
(Y (1)− f1(X)) + f1(X)

)2

| X

]

= E

[((
1− T

e(X)

)
(f1(X)− Y (1)) + Y (1)

)2

| X

]
= E [ζ1 | X] + (m1(X))

2
+ w1(X) (f1(X)−m1(X))

2
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We also have the second moment of τ̃DR0
in the same manner as follows:

E
[
(τ̃DR0

)
2 | X

]
= E [ζ0 | X] + (m0(X))

2
+ w0(X) (f0(X)−m0(X))

2

where ζ1 = (Y (1) −m1(X))2/e(X), ζ0 = (Y (0) −m0(X))2/(1 − e(X)). Note that E [ζ1 | X] = V(Y (1) | X)/e(X)
and E [ζ0 | X] = V(Y (0) | X)/(1− e(X)).

Then, by using the result of Proposition 3, we obtain

V (τ̃DR1
| X) = E [ζ1 | X] + w1(X) (f1(X)−m1(X))

2

V (τ̃DR0
| X) = E [ζ0 | X] + w0(X) (f0(X)−m0(X))

2

In addition, from Lemma 6,

V (τ̃DR | X) = V (τ̃DR1 − τ̃DR0 | X)

= V (τ̃DR1 | X)− 2Cov (τ̃DR1 , τ̃DR0 | X) + V (τ̃DR0 | X)

= E [ζ1 + ζ0 | X] + w1(X) (f1(X)−m1(X))
2

+ w0(X) (f0(X)−m0(X))
2

+ 2 (f1(X)−m1(X)) (f0(X)−m0(X))

= E [ζ1 + ζ0 | X] +
(√

w1(X) (f1(X)−m1(X)) +
√
w0(X) (f0(X)−m0(X))

)2

where w1(X)w0(X) = 1. Hence, we have EX [V (τ̃DR | X)] = ζ + EX
[{∑

t∈T
√
wt(X)(ft(X)−mt(X))

}2
]

where

ζ = E [ζ1 + ζ0] .

A.5. Proof of Theorem 2

Proof.

V

(
2n−1

n∑
i=1

(τ̂i − τi)(τ̃i − τi)

)

= 4n−2 V

(
n∑
i=1

(τ̂i − τi)(τ̃i − τi)

)

= 4n−2 E

( n∑
i=1

(τ̂i − τi)(τ̃i − τi)

)2
 ∵ (a) = 0

= 4n−2 E

 n∑
i=1

n∑
j=1

(τ̂i − τi)(τ̃i − τi)(τ̂j − τj)(τ̃j − τj)


= 4n−2

n∑
i=1

E
[
(τ̂i − τi)2(τ̃i − τi)2

]
∵ EX [(τ̂i − τi)(τ̃i − τi)(τ̂j − τj)(τ̃j − τj)] = 0,∀i, j(i 6= j)

≤ 4Cmaxn
−1 E

[
(τ̃ − τ)2

]
= 4Cmaxn

−1 EX
[
E[(τ̃ − E[τ̃ | X])2] | X

]
= 4Cmaxn

−1 EX [V (τ̃ | X)]

A.6. Proofs of Technical Lemmas

Lemma 6. The conditional covariance of τ̃DR1
and τ̃DR0

is:

Cov (τ̃DR1 , τ̃DR0 | X) = − (f1(X)−m1(X)) (f0(X)−m0(X))
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Proof.

Cov (τ̃DR1 , τ̃DR0 | X) = E [τ̃DR1 · τ̃DR0 | X]− E [τ̃DR1 | X] · E [τ̃DR0 | X]

= E [τ̃DR1 · τ̃DR0 | X]−m1(X) ·m0(X)

Then,

E [τ̃DR1
· τ̃DR0

| X]

= f1(X)f0(X) + f1(X)E
[

1− T
1− e(X)

(Y (0)− f0(X)) | X
]

+ f0(X)E
[

T

e(X)
(Y (1)− f1(X)) | X

]
= f1(X)f0(X) + f1(X)(m0(X)− f0(X)) + f0(X)(m1(X)− f1(X))

Therefore,

E [τ̃DR1
· τ̃DR0

| X]−m1(X)m0(X)

= f1(X)f0(X) + f1(X)(m0(X)− f0(X)) + f0(X)(m1(X)− f1(X))−m1(X)m0(X)

= − (f1(X)−m1(X)) (f0(X)−m0(X))

Lemma 7. (Similar to Lemma A.4 of (Shalit et al., 2017)) Let Φ : X → R be an invertible representation with Ψ its inverse.
Let G be a family of functions g : R → R≥0 and h : R× T → Y be a hypothesis. Assume that, for any given t ∈ T and
w : X × T → R≥0, there exists a constant BΦ > 0, such that 1

BΦ
· `wh,Φ(Ψ(r), t) ∈ G. Then we have:

εwCF1−t
(h,Φ) ≤ εwFt

(h,Φ) +BΦ · IPMG

(
pΦ
t , p

Φ
1−t
)

Proof.

εwCF1−t
(h,Φ)− εwFt

(h,Φ) =

∫
X
`wh,Φ(x, t) (p1−t(x)− pt(x)) dx

=

∫
R
`wh,Φ(Ψ(r), t)

(
pΦ

1−t − pΦ
t

)
dr ∵ Lemma A.2 of (Shalit et al., 2017)

= BΦ ·
∫
R

`wh,Φ(Ψ(r), t)

BΦ

(
pΦ

1−t − pΦ
t

)
dr

≤ BΦ · sup
g∈G

∣∣∣∣∫
R
g(r)

(
pΦ

1−t − pΦ
t

)
dr

∣∣∣∣
= BΦ · IPMG

(
pΦ
t , p

Φ
1−t
)

where Lemma A.2 of (Shalit et al., 2017) states the standerd changes of variable formula: pΦ(t | r) = p(t | Ψ(r)) and
pΦ(Y (t) | r) = p(Y (t) | Ψ(r)) for all r ∈ R and t ∈ T .

Lemma 8. (Similar to Lemma A.5 of (Shalit et al., 2017)) Let Φ : X → R be an invertible representation and h :
R× T → Y be a hypothesis. We also define a regression function as ft(x) = h(Φ(x), t). Then, for any given t ∈ T and
w : X × T → R≥0, the following equalities hold:∫

X
w(x) (ft(x)−mt(x))

2
pt(x)dx = εwFt

(h,Φ)− σ2
t,w(pt)∫

X
w(x) (ft(x)−mt(x))

2
p1−t(x)dx = εwCF1−t

(h,Φ)− σ2
t,w(p1−t)
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Proof.

εwFt
(h,Φ) =

∫
X
`wh,Φ(x, t)pt(x)dx

=

∫
X×Y

w(x) (ft(x)− Y (t))
2
p (Y (t)|x) pt(x)dY (t)dx

=

∫
X
w(x) (ft(x)−mt(x))

2
pt(x)dx

− 2

∫
X×Y

w(x) (ft(x)−mt(x)) (Y (t)−mt(x)) p (Y (t), x | t) dY (t)dx

+

∫
X×Y

w(x) (Y (t)−mt(x))
2
p (Y (t), x | t) dY (t)dx

=

∫
X
w(x) (ft(x)−mt(x))

2
pt(x)dx+ σ2

t,w(pt)

Thus, we have, ∫
X
w(x) (ft(x)−mt(x))

2
pt(x)dx = εwFt

(h,Φ)− σ2
t,w(pt)

We can derive the analogous equality for counterfactual loss in the same manner.

A.7. Proof of Theorem 5

Proof.

EX [{
∑
t∈T

√
wt(X)(ft(X)−mt(X))}2]

= EX [{
√
w1(X)(f1(X)−m1(X)) +

√
w0(X)(f0(X)−m0(X))}2]

≤ 2

∫
X

(
w1(X) (f1(X)−m1(X))

2
+ w0(X) (f0(X)−m0(X))

2
)
p(x) dx ∵ (x+ y)2 ≤ 2(x2 + y2)

= 2π1

∫
X
w1(X) (f1(X)−m1(X))

2
p1(x) dx+ 2π0

∫
X
w1(X) (f1(X)−m1(X))

2
p0(x) dx

+ 2π1

∫
X
w0(X) (f0(X)−m0(X))

2
p1(x) dx+ 2π0

∫
X
w0(X) (f0(X)−m0(X))

2
p0(x) dx

= 2π1

(
εw1

F1
(h,Φ)− σ2

t=1,w1
(p1)

)
+ 2π0

(
εw1

CF0
(h,Φ)− σ2

t=1,w1
(p0)

)
+ 2π1

(
εw0

CF1
(h,Φ)− σ2

t=0,w0
(p1)

)
+ 2π0

(
εw0

F0
(h,Φ)− σ2

t=0,w0
(p0)

)
∵ Lemma 8

≤ 2εw1

F1
(h,Φ) + 2εw0

F0
(h,Φ) + 2BΦ · IPMG

(
pΦ
t , p

Φ
1−t
)
− 4σ2 ∵ Lemma 7

B. Detailed Experimental Settings
B.1. Model Selection Experiment in Section 5.2

The weighted counterfactual regression model used as a regression function of our proposed metric has some hyperparameters
itself. To tune the hyperparameters of this model, we used the simple µ-risk as described in (Schuler et al., 2018). Table 2
describes the hyperparameter search spaces and the resulting set of hyperparameters for the weighted counterfactual
regression .

B.2. Hyperparameter Tuning Experiment in Section 5.3

Table 3 provides the hyperparameter search space of the Gradient Boosting Regressor used in the hyperparameter tuning
experiment in Section 5.3.



Counterfactual Cross-Validation

Table 2. Hyperparameter search spaces and the selected values of the hyperparameters for the weighted counterfactual regression in our
proposed CFCV. A set of hyperparameters optimzed the µ-risk (Schuler et al., 2018) was selected for the weighted CFR.

Hyperparameters Search spaces Selected values

Num. of hidden layers for h and Φ in Eq. (12) {1, 2, 3} 3
Dim. of hidden layers for h and Φ in Eq. (12) {20, 50, 100} 100
trade-off parameter α in Eq. (12) [0.01, 100] 0.356
learning rate [0.0001, 0.01] 4.292× 10−4

batch size 256 (fixed) 256 (fixed)
dropout rate 0.2 (fixed) 0.2 (fixed)

Table 3. Hyperparameter search space for Gradient Boosting Regressors.

Hyperparameters Search spaces

n estimators 100 (fixed)
max depth [1, 20]
min samples leaf [1, 20]
learning rate [10−5, 10−1]
subsample {0.1, 0.2, . . . 1.0}


